
1 Basics

De�nition 1 (Zorn�s lemma) If every totall ordered set in a poset P has an
upper bound in P , then P contains a maximal element.

De�nition 2 An element m of a poset P is called maximal if there is no
y 2 P such that m � y and m 6= y. That is, if m is maximal and m � x implies
m = x

De�nition 3 Let V be a non-empty set and F be a �eld. Then, V is a vector
space over F if for + : V � V �! V and : : F� V �! V if

1. u+ v 2 V , as implied by the de�nition of the function +

2. u+ v = v + u

3. u+ (v +w) = (u+ v) +w

4. There is an object 0 in V , called a zero vector for V , such that 0 + u =
u+ 0 = u 8u in V .

5. For each u in V , there is an object �u in V , called a negative of u, such
that u+ (�u) = (�u) + u = 0

6. If � is any scalar, i.e. an element of F, and u is any object in V , then
�u is in V , as implied by the de�nition of scalar multiplication function.

7. �(u+ v) = �u+ �v

8. (�+ �)u = �u+ �u

9. (��)u = �(�u)

10. 1u = u 8u 2 V and 1 2 F

De�nition 4 Let X and Y be vector spaces over the same �eld. Then, an
operator T : X �! Y is linear if for all x; y 2 X and scalars �, T (x + y) =
T (x) + T (y) and T (�x) = �T (x).

Lemma 5 An operator T : X �! Y is linear if and only if 8x; y 2 X and
8�; � 2 F , T (�x+ �y) = �T (x) + �T (y)

Proof. T (�x+ �y) = T (�x) + T (�y) = �T (x) + �T (y)
Conversely, by de�nition, T (�x) = �(T (x)) = �T (x)
For the �rst property of linearity, we have

T (�x+ �y)

= �T (x) + �T (y)

= T (�x) + T (�y)
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If �x = u and �y = v; then from T (�x + �y) = T (�x) + T (�y), we have
T (v + u) = T (u) + T (v)
Of special importance is the fact that for any linear operator T and 0 vector,

T (0) = 0
Proof. T (0) = T (x� x)
= T (x+ (�1x))
= T (x) + T (�1x)
= T (x)� T (x)
=0

De�nition 6 Let Let X and Y be vector spaces and T : X �! Y be an oper-
ator. Then, the null space N (T ) or kernel of T , denoted by kerT is the set
fx j T (x) = 0g :

This is the complement of the suppT

Theorem 7 Let T be a linear operator. Then kerT is a vector space.

Proof. For x; y 2 kerT , T (�x� �y) = �T (x)� �T (y) = 0 so that �x� �y 2
kerT

De�nition 8 Let N be a vector space over a �eld F. A norm on N is a
real-valued function k:k : N �! [0;1) such that

N1 kxk > 0 8x 2 N and kxk = 0 () x = 0

N2 k�xk = j�j kxk,8 � 2 F; x 2 N (homogeneity)

N3 kx+ yk � kxk+ kyk for arbitrary x; y 2 N (triangle inequality).

Theorem 9 N is Banach if and only if every absolutely convergent series is
convergent.

Proof. If B is a Banach space, then let
P
kxkk be convergent for a sequence

xk. What this means is that we can have an integer N such that

1X
k=N

kxkk < �

If we have an N such that for n;m > N , the partial sums Sn and Sm for

Sn =
nX
k=1

xk

can give us

kSn � Smk =


mX
k=n+1

xk
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for n < m. Then, 
mX

k=n+1

xk

 �
mX

k=n+1

kxkk < �

i.e. kSn � Smk < � is Cauchy. Since this is a Cauchy sequence, we must have a
limit point S. Thus, S = lim

n!1
Sn exists and is �nite so that the series converges.

Conversely, let every absolutely convergent series be convergent and let xn
be a Cauchy sequence. Since kxn � xmk < �, we can have an integer n1 so that
kxn � xmk < 2�1 for n;m � n1. Again, we can �nd a n2 such that

kxn � xmk < 2�2

for n;m � n2: Moving on, we can �nd nk such that

kxn � xmk < 2�k

for n;m � nk. In particular, since

nk+1 > nk � nk

we can have n = nk and m = nk+1 so that we havexnk+1 � xnk < 2�k
Thus, we can have a subsequence nk such thatxnk+1 � xnk < 2�k
If we substitute yk for xnk+1 � xnk , thenX

kykk < �

implying that we have an absolutely convergent series. By our hypothesis,
it should converge. Thus,

P
yk �! S and the sequence of partial sums of yk

converges and this is a subsequence of xn. Since xn has a convergent subsequence
and is Cauchy, it will also converge to the same limit as its subsequence. Thus,
this particular Cauchy sequence converges, which implies our space is Banach.

Theorem 10 Every �nite dimensional normed space N is complete.

Proof. Consider the Cauchy sequence xk and a set of linearly independent
basis fe1; e2; :::; eng. We can represent the k-th term of this sequence as xk =
�
(k)
1 e1 + �

(k)
2 e2 + ::: + �

(k)
n en where the superscript is not a power but rather

serves as a reminder that the scalars �i will depend on k. Now, For n;m > N

kxn � xmk < c�

=)


nX
j=1

�
�
(n)
j � �(m)j

�
ej

 < �
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=) 9c such that c
����� nPj=1�(n)j � �(m)j

����� �
 nP
j=1

�
�
(n)
j � �(m)j

�
ej

 < c�
i.e.

����� nPj=1
�
�
(n)
j � �(m)j

������ < � which is a Cauchy sequence of scalars belonging
to a complete �eld. Needless to say, we have convergence so that we can use
n such limits of the form �i to construct x = �1e1 + �2e2 + ::: + �nen so that
x 2 N . Now,

kxk � xk =


nX
j=1

�
�
(k)
j � �j

�
ej


�

������
nX
j=1

�
�
(k)
j � �j

������� kejk
� b

������
nX
j=1

�
�
(k)
j � �j

�������
where b = max

j
ej

kxk � xk � b

������
nX
j=1

�
�
(k)
j � �j

�������
< b�

so that the Cauchy sequence converges, implying convergence.

De�nition 11 Let (N; k:k1) and (M; k:k2) be normed spaces and T : N �!M
a linear operator. The operator T is said to be bounded if there is a real number
c > 0 such that 8x 2 N kT (x)k2 � c kxk1
Theorem 12 Let T be a linear operator. Then, T is continuous if and only if
it is bounded.

Proof. Let T : X �! Y be continuous. Then, kT (x)� T (x0)kY < " whenever
kx� x0kX < �
or kT (x� x0)kY < " whenever kx� x0kX < �
Let x � x0 = "y

akykX
for a > 0: This is justi�ed since the denominator is

bounded and not equal to zero. Then,T ( "y

c kykX
)


Y

< ") kT (y)kY < a kykX

or kT (y)kY � c kykX for some 0 < c < a
Conversely, kT (y)kY � c kykX
Let y = x� x0 for kykX = kx� x0kX < �
Then, kT (x)� T (x0)kY < c� = " whenever kx� x0kX < �
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Corollary 13 Let T : N �! M be a linear operator and N; M are normed
spaces. Then, if T is continuous at a single point, then it is continuous.

Corollary 14 xn �! x implies T (xn) �! T (x)

Proof. Let k(xn � x)k < �= kTk for n > N . Then,

kT (xn)� T (x)k
= kT (xn � x)k
� kTk k(xn � x)k
< �

Theorem 15 kerT is closed for linear, bounded T .

Proof. For a limit point x of kerT , there exists a sequence xn �! x. From
this, T (xn) �! T (x). Since T (xn) = 0, then T (x) = 0 so that x 2 kerT
This goes out to say that the range of a bounded operator need not be

closed. This enables us to di¤erentiate between bounded operators and compact
operators. Since the operator is continuous, the inverse images of open (resp.
closed) sets must be open (resp. closed). If the image of a subset of the range
is not closed, then the domain must necessarily not be closed.
All the corresponding results hold for functionals.
We have already seen that �nite dimensional spaces are much simpler than

in�nite dimensional ones in certain aspects. Of particular note is the role of
operators and functionals on such spaces. We will show this by incorporating
matrices into our discussions. For a review of matrices, see the appendix.
Recall that for an n-dimensional vector, an r � n matrix acts on it to give

a r-dimensional vector. Thus, linear operators on �nite dimensional spaces
can be viewed as matrices. Matrix operation is associative, linear and in some
cases, bounded and invertible, making it a perfect candidate for our present
discussion. We also have the added advantage of going computational. Here�s
how the equivalence can be made:
Let T : X �! Y be a linear operator with X;Y normed spaces:
Let dimX = n <1 and dimY = r <1 and let basis of X be e1; e2; :::; en.

Then, every vector x in the domain can be represented using scalars �i�s such
that

x =
nX
i=1

�iei

Applying the linear operator, we get

y = T (x) =
nX
i=1

�iT (ei)
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If �e1; �e2; :::; �er are the basis of the range, then every vector y can be represented
as

y =
rX
i=1

�i�ei

Now, every T (ek) is a vector in the range. Hence, this, too can be represented
as

T (ek) =
rX
i=1

ik�ei

where �i; i are scalars in the �eld of the codomain. The scalar  will vary,
depending on the vector T (ek), which justi�es the subscript. Now, the two
representations of y should agree. That is,

y =

rX
k=1

�k�ek =

nX
i=1

�kT (ek)

This equation implicitly assumes that we can know the (unique) images of each
member of the basis of the domain. The representation of the vector T (ek) is
placed into this equation to give

y =
nX
i=1

�kT (ek) =
nX
i=1

�k

rX
i=1

ik�ei

=
rX
i=1

nX
i=1

(�kik) �ei

Now, y cannot have two di¤erent representations. We must have �i =
nP
i=1

(�kik)

for each i. This should look familiar: it is a tuple of a vector b if you perform the
matrix multiplication Ax = b=(�i). Now, if we can determine these �i�s, we
know the value of T (x). By now, it should be clear that in order to determine
the matrix equivalent A of T , we can safely say that A = (aik) = (ik). Notice
that this depends on the choice of basis for the domain so that there can be
many di¤erent matrices by changing the choice of basis of the domain.
Note that this is valid only for �nite dimensional spaces!
Let us do an example to hit the point home.

Example 16 Let�s say we have an operator that skews a vector and reduces
a dimension. That is, T (x; y; z) = (3x; 2y). To make our lives simple, we
will assume e1 = (1; 0; 0) and e2 = (0; 1; 0) as our basis in both spaces with an
addition of e3 = (0; 0; 1) in the domain. Now, T (e1) = (3; 0), T (e2) = (0; 2)
and T (e3) = (0; 0). Therefore, the corresponding matrix is

A =

�
3 0 0
0 2 0

�
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so that

A =

�
3 0 0
0 2 0

�24 x
y
z

35 = � 3x
2y

�

Recall the de�nition of supremum. It is an upper bound and the lowest of
the upper bounds of a set. Thus, we can collect all x such that kT (x)k

kxk � c and
de�ne a supremum out of it. If we can �nd a smallest such c, then we have

De�nition 17 The norm of a bounded linear operator T , denoted by kTk, is
de�ned as kTk = sup

x

kT (x)k
kxk .

Needless to say, this is valid when kxk 6= 0. Also, the norm of kTk can be
taken over normalised vectors so that kTk = sup

kxk=1
kT (x)k.

Note the requirement for a norm to exist: the operator must be bounded.
Since kTk = sup

x

kT (x)k
kxk , we can safely say that kTk � kT (x)k

kxk for all x so that

we have for ourselves the inequality

kT (x)k � kTk kxk

Thus, the following de�nitions are equivalent:
kTk := sup

x6=0

kT (x)k
kxk = sup

kxk=1
kT (x)k = sup

0<kxk�1
kT (x)k = sup

0<kxk<1
kT (x)k =

inf fk : kT (x)k � k kxk ;8xg
Proof. Let A =

n
kT (x)k
kxk : x 2 Xn f0g

o
B = fkT (x)k : x 2 Xn f0g and kxk = 1g
C = fkT (x)k : x 2 Xn f0g and kxk � 1g
D = fkT (x)k : x 2 Xn f0g and kxk < 1g
Since equal sets have the same supremum, we will show that A = B = C = D
Clearly, A contains B, C and D.
Let a 2 A
() a = kT (x)k

kxk for some x 2 Xn f0g
Since X is a norm space and closed under scalar multiplication, we can let

y kxk = x
() y 6= 0 and kyk = 1 so that a = kT (y)k for some y 2 Xn f0g
() a 2 B
() A = B
It is clear that D � C and that B [D = C so that B � C as well.
Further, B = A � C so that we have B = A = C
To show that B � D
a 2 B
=) a = kT (x)k for some x 2 Xn f0g and kxk = 1
Assume that 9xn such that xn �! x.
Let yn = n�1

n xn. Then, yn �! y. Furthermore, kynk < kxnk so that
kxk = 1 implies kyk < 1
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Then, an = kT (yn)k =
��n�1
n

�� kT (xn)k �! kT (y)k = a
Finally, we show that sup

x6=0

kT (x)k
kxk = inf fk : kT (x)k � k kxk ;8xg

Assume that sup
x6=0

kT (x)k
kxk = �

Then, kT (x)k � � kxk
=) sup

x6=0

kT (x)k
kxk = � � inf fk : kT (x)k � k kxk ;8xg

Next, inf fk : kT (x)k � k kxk ;8xg � kT (x)k
kxk � �� 1

n for all n

So that inf fk : kT (x)k � k kxk ;8xg = � = sup
x6=0

kT (x)k
kxk

This norm satis�es all the conditions of a norm space:
Proof. For N1, kTk � kT (x)k

kxk � 0. Next, kTk = 0 if and only if sup kT (x)kkxk =

0 which implies sup kT (x)k = 0: Since we have a supremum of non-negative
numbers and this is equal to zero, therefore kTk = 0 if and only if kT (x)k = 0
for all x. This is only possible when T is the zero operator.
For N2, k�Tk = sup

x

k�T (x)k
kxk = sup

x

j�jkT (x)k
kxk = j�j sup

x

kT (x)k
kxk = j�j kTk. In

the second step, the homogenity property is applied because of the norm of
R(T ). In the third step, the scalar can be factored out because it has no role
in the supremum since it does not depend on x.
For N3, sup k(T1 + T2) (x)k = sup kT1 (x) + T2 (x)k. Since kT1 (x) + T2 (x)k �

kT1 (x)k + kT2 (x)k and so also their supremum, thus sup kT1 (x) + T2 (x)k �
sup kT1 (x)k+ sup kT2 (x)k
From this, we can have kT1 + T2k � kT1k+ kT2k
Thus, the space of bounded, linear operators T : X �! Y between vector

spacesX and Y , denoted byB(X;Y ) is a norm space. Under point-wise addition
and scalar multiplication, B (X;Y ) is a vector space.

Theorem 18 If Y is a Banach space, then so is B(X;Y )

Proof. Now, remember, elements of B(X;Y ) are linear operators T so that
if we want to show that an arbitrary Cauchy sequence in B(X;Y ) converges,
we must take a sequence of operators and show that it converges. Let (Tn)
be a Cauchy sequence of operators in B(X;Y ). Thus, by de�nition, for all
� > 0, 9N such that kTn � Tmk < � whenever n;m > N . For all x 2 X and
n;m > N , we have kTn (x)� Tm (x)k = k(Tn � Tm) (x)k (point-wise addition)
� kTn � Tmk kxk (Ti�s are bounded)
Therefore, kTn (x)� Tm (x)k � kTn � Tmk kxk < � kxk. Now, for any

�xed x and given �0, we may choose � = �x such that �x kxk < �0. Then,
kTn (x)� Tm (x)k < �0, �0 > 0 and n;m > N implies Tn (x) is Cauchy in Y .
Since Y is complete, therefore there exists an element y such that the Cauchy
sequence Tn (x) �! y 2 Y . Now, the limit y depends upon the choice of
x because kTn (x)� yk �! 0. We can call this y = T (x). Thus, we have
Tn (x) �! T (x). To prove that T (x) 2 B (X;Y ), we need to show that T (x)
is linear and bounded.
Linear:
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T (�x+ �y)
= lim

n!1
Tn (�x+ �y)

= lim
n!1

[�Tn (x) + �Tn (y)]

= lim
n!1

�Tn (x) + lim
n!1

�Tn (y)

= � lim
n!1

Tn (x) + � lim
n!1

Tn (y)

= �T (x) + �T (y)
Bounded:
kTn (x)� T (x)k
=
Tn (x)� lim

m!1
Tm (x)


= lim

m!1
kTn (x)� Tm (x)k

� lim
m!1

kTn � Tmk kxk
= kTn (x)� T (x)k kxk
< � kxk
That is, kTn (x)� T (x)k � � kxk. Hence the operator (Tn � T ) is bounded

and Tn � T 2 B (X;Y ). Since Tn 2 B (X;Y ) and B (X;Y ) is closed under
addition, therefore Tn � (Tn � T ) = T 2 B (X;Y ).
A similar property holds for compact X and Y = R or C

Proposition 19 If X is a compact metric space and Y is a complete metric
space, then C(X;Y ), with the norm kfk = sup

x
jf (x)j, is complete.

Proof. The existence of the norm is justi�ed by the compactness criterion.
Suppose (fn) is a Cauchy sequence in C(X;Y ), so, as n �!1, kfn � fmk �!
0. In particular (fn(x)) is a Cauchy sequence in Y for each x 2 X since
jfn (x)� fm (x)j = j(fn � fm) (x)j � kfn � fmk kxk �! 0 so it converges, say
to f(x) 2 Y . It remains to show that f 2 C(X;Y ) and that fn �! f: We
have that jfn (x)� f (x)j � kfn � fk kxk �! 0 8x i.e., fn �! f uniformly. It
remains only to show that f is continuous. For this, let xk �! x in X and let
� > 0. Pick N so that �N < �. Since fN is continuous, there exists K 2 N such
that k � K

=) jfN (xk)� fN (x)j < �. Hence k � K
=) jf (xk)� f (x)j
= jf (xk)� fN (x) + fN (x)� f (x) + f (xk)� f (xk)j
� jf (xk)� fN (xk)j+ jfN (xk)� fN (x)j+ jf (x)� fN (x)j �! 0
Similar results hold for functionals. Just like we can have for ourselves a

norm space of bounded linear operators, we can have for ourselves a space of
functionals. All we do is collect bounded functionals and have for ourselves a
norm space.

De�nition 20 The collection of all functionals on a vector space V over F is
called the algebraic dual space V * of V .

Since these are functionals, we can use our previous knowledge of functions
to give us our addition and scalar multiplication binary operators. That is, for
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f1 + f2 2 V *, then
+ : V *� V * �! V *

and
� : F� V * �! V *

Then
+(f1; f2) = (f1 + f2) (x) = f1 (x) + f2 (x)

and
� (�; f) = (�f) (x) = � (f (x))

In this way, the additive identity is the zero function Ô (x) = 0 to give us a
vector space V *.
We can go a step further ahead and consider the algebraic dual space (V *)*

of the dual space V *, called the second algebraic dual V **. This is the space
of functionals on the dual space itself. We can move on and on but for now,
second algebraic dual spaces will su¢ ce.
Here is one purpose of considering the second algebraic dual space: we can

de�ne functionals of V * as follows: g (f). Remember, g 2 V ** and f acts as an
input variable, much like f 2 V * and acts on elements x 2 V . Just like we can
vary x to �nd di¤erent values for f (x), likewise we can vary f to �nd di¤erent
values of g. If we �x an x 2 V , then one way of de�ning g (f) is as follows:
g (f) = gx (f) = f (x), with the subscript reminding us what to do with f .
This g is linear, keeping the x �xed.

Proof. g (�f1 + �f2)
= (�f1 + �f2) (x)
= (�f1) (x) + (�f2) (x)
= � (f1 (x)) + � (f2 (x))
= �g (f1) + �g (f2)
Since V ** is the collection of linear and bounded functionals on V *, gx

really is an element of V **. Just as we have kernels or null spaces of a speci�c
mapping, that is, ker g = N (g) = fx j g (x) = 0; x 2 D (g)g ; we can also have a
null space or a kernel of the entire vector space itself. In this case,

N (V ) = fx j f (x) = 0 ;8f 2 V *g

We can of course do the same with the algebraic dual space in which every such
functional is considered. That is,

N (V *) = fx j gx (f) = f (x) = 0 ;8g 2 V **g = N (V )

This is indeed a vector subspace of V .
Proof. Let x; y 2 N (V *) such that f (x) = f (y) = 0 for any f 2 V *. Then,
f (�x+ �y) = 0 hence �x+ �y 2 N (V *)
In either case, dimN (g) and dimN (V *) � n if dimV = n. These facts

follow from the fact that both are subspaces and from the fact that dimV =
dimV *
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Notice the similarities and di¤erences between the null space of an operator
and the null space the vector space itself.
We now move to a justi�cation of that subscripted x to consider a relation-

ship between V and V **. Let us de�ne a mapping as follows and call it the
canonical mapping: C : V �! V ** such that C (x) = gx. This mapping is
linear
Proof. C (�x+ �y)
= g�x+�y
= f (�x+ �y) 8f
= �f (x) + �f (y)
= �gx + �gy
= �C (x) + �C (y)
In mathematical literature, this mapping is also called the canonical embed-

ding of V into V **. Since this operator C is linear and takes elements from a
vector space to another vector space, we have for ourselves a vector space homo-
morphism! Provided that this mapping is bijective, we then have for ourselves
an isomorphism. The choice of the word "embedding" should be clear from the
choice of domain and range and the fact that we have a isomorphism to a subset
of the codomain. This is also stated as follows: V is embeddable into V **. The
mapping C is one-to-one provided that the functionals f are injective. i.e. if
we have two functionals g and h, then they are in�uenced because of di¤erent
elements from the domain.
Proof. Let C (x) = C (y). Then, gx = gy and f (x) = f (y) 8f =) x = y
Thus, if we limit the codomain to the range and assume that every func-

tional f on V is injective, then we have for ourselves a bijective C and thus
an isomorphism. If the codomain and the range are already the same, then we
have for ourselves an isomorphism without limiting the codomain.

De�nition 21 Let E = fe1; :::; eng be a basis of X. E*= fe�1; :::; e�ng is an
(algebraic) dual basis for the algebraic dual space X* of X.

Now this de�nition may not be exactly enlightening but was only mentioned
to set some record straight. Let�s look at it from a computational point of view
(note that index i varies �nitely). This is important because we want to be
able to �nd the elements of a dual space. The computation follows the manner

for operators. Thus, if x =
nP
i=1

�iei, then f (x) =
nP
i=1

�if (ei) =
nP
i=1

�ie
�
i . For

now, f (ei) = e�i is just a notation but we are trying to go in accord with the
de�nition given above, as will hopefully be made clear. Notice that

�
e�1 e�2 ::: e�n�1 e�n

� 264 �1
...
�n

375 = nX
i=1

�ie
�
i

Clearly, our required 1� n matrix A is, therefore, A = (e�1i) = (f (ei)) : By the
construction principle for linear maps (above), there exists a linear functional
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fi = e
�
i 2 E� which maps ei to 1 and the other basis vectors to 0. That is, for

each basis e�k; e
�
k (ej) = fk (ej) = �kj where �ij is the Kronecker delta function.

Thus, if we have a vector v =
nP
i=1

�iei we must have

e�k (v) = fk (v) = fk

 
nX
i=1

�iei

!
=

nX
i=1

�ifk (ei) = �k

which shows that the linear functional e�i maps every vector of X to its i-th
coordinate with respect to the basis B. In order to be able to thus say that for

all x 2 X, x =
nP
i=1

fi (x) ei, we need to show that the E* is a linearly independent

set and this will be done in the theorem below but before that, notice how the
space and its dual are connected and that this construction works for any basis
E = fe1; :::; eng :

Example 22 The dual basis for the basis (1; 0; 0) ; (0; 1; 0) and (0; 0; 1) in R3

can be found as follows: (1; 0; 0)T ; (0; 1; 0)T and (0; 0; 1)T where the superscript
T indicates the transpose of this vector. Justify it to yourself that these trans-
posed vectors do indeed form functionals and the basis for the algebraic dual of
R3

Theorem 23 Let X be a vector space and E = fe1; :::; eng be a basis of X.
Then, E*= fe�1; :::; e�ng = ff1; f2; :::; fng is the basis for the agebraic dual X* of
X and dimX = dimX*= n

Lemma 24 Let X be a �nite dimensional vector space. If x0 2 X has the
property that f (x0) = 0 for all f 2 X*, then x0 = 0

Proof. Take x0 =
nP
i=1

�iei. For all f 2 X*, we have 0 = f (x0)

= f

�
nP
i=1

�iei

�
=

nP
i=1

�if (ei) =
nP
i=1

�ie
�
i = 0

Since e�0i �s are linearly independent, we must have �i = 08i. Hence x0 =
nP
i=1

�iei =) x0 = 0

In addition to the algebraic dual space for vector spaces, we have an equiv-
alent concept, called simply dual space, for norm spaces. Such a space will be
denoted by X�

Corollary 25 C is injective

Proof. Cx (f) = Cx (g) =) f (x) = g (x) =) (f � g) (x) = 08x =)
f � g = 0 =) f = g

Theorem 26 (Hahn-Banach Theorem) Let (X; k:k) be a normed space and
let Y � X be a subspace. For any f 2 X�, there exists ~f 2 X* such that ~f is
an extension of f ( ~f (y) = f (y) for any y 2 Y ) and

 ~f = kfk
12



Corollary 27 Let X be a normed space and let x0 6= 0 be any element of X.

Then, there exists a linear bounded functional ~f on Xsuch that
 ~f = 1 and

~f (x0) = kx0k

Proof. Consider the subspace Y consisting of x = �x0. De�ne f on Y by
f (x) = � kx0k. f is bounded has norm kfk = 1 because jf (x)j = jf (�x0)j =
j�j kx0k = kxk
From the Hahn-Banach theorem, kfk =

 ~f = 1. Further, ~f (x0) = f (x0) =
kx0k

Corollary 28 For every x 2 X, kxk = sup
f2X0

jf(x)j
kfk

Proof. sup
f2X0

jf(x)j
kfk � j ~f(x)j

k ~fk = kxk
1 = kxk

Conversely, jf (x)j � kfk kxk implies sup
f2X0

jf(x)j
kfk � kxk

Corollary 29 X��and X are isometric. That is, kgxk = kxk

Proof. kgxk = sup
f2X0

jgx(f)j
kfk = sup

f2X0

jf(x)j
kfk = kxk

Theorem 30 (Principle of uniform boundedness (Banach-Steinhaus))
Let (X; k:kX) be a Banach space, (Y; k:kY ) a normed space and Tn : X �! Y
a bounded operator for each n 2 N . Suppose that for any x 2 X there exists
Cx > 0 such that kTnxkY � Cx for all n. Then there exists C > 0 such that
kTnk � C for all n.

Theorem 31 If (xn) is a sequence in a Banach space and (f (xn)) is bounded
for all f 2 X 0, show that kxnk is bounded.

Proof. We will apply the uniform boundedness principle to the dual space
X*. This is complete, whether or not X is. The role of Tn will be played by
x̂n 2 X**. Recall that x̂n is de�ned as the bounded linear functional on X*
for which x̂n (f) = f (xn) (f 2 X*). The assumption that (f (xn)) is bounded
means that for any vector f in our space X* the sequence x̂n (f) is bounded.
Using the uniform boundedness principle we get that there exists C such that
kx̂nk � C for all n. From the corollary of Hahn-Banach theorem, kxnk = kx̂nk.

2 Algebras

For a vector space V over F equipped with an additional binary operation from
� : V � V �! A is an algebra over K if the following identities hold for any
three elements x; y, and z of V , and all scalars � of K
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1. (x � y�) z = x � (y � z) (Associativity)

2. (x+ y) � z = x � z + y � z (Right Distributivity)

3. x � (y + z) = x � y + x � z (Left Distributivity)

4. (�x � y) = �(x � y) = �(x � �y) (Compatibility with scalars)

These three axioms are another way of saying that the binary operation is
bilinear. An algebra over K is sometimes also called a K-algebra, and K is called
the base �eld of V . The binary operation is often referred to as multiplication
in V . For example, for the vector space C [a; b] of continuous functions, the
ordinary multiplication of functions satis�es the above. If this multiplication is
associative and if there are inverses such that the for identity e = xx�1, then V
is an associative division algebra.
We can turn a norm space into an algebra if

kxyk � kxk kyk

holds for all x; y
If the space is complete, then the norm algebra is referred to as a Banach

Algebra.

Example 32 Let H be a Hilbert space. The norm operator on the algebra
B(H) of bounded linear operators on H is a norm space with multiplication
de�ned by composition. Then, kTSk = sup

kxk=1
kT (S (x))k � sup

kxk=1
kTk kSk =

kTk kSk. Since B (H;H) = B (H), therefore B (H) is complete and forms a
Banach Algebra

Example 33 Corresponding results for C (X), continuous functionals de�ned
on a compact space X, with the pointwise multiplication (fg)(x) = f(x)g(x); is
a Banach algebra. First, collection of bounded functionals forms a vector space
(dual space). Axioms for algebra are routine to verify. Norm can be de�ned as
kfk = sup

kxk=1
jf (x)j. The unit element is the function e(x) � 1: This has norm

1. Finally,kfgk = sup
kxk=1

j(fg) (x)j

= sup
kxk=1

jf (x) g (x)j � sup
kxk=1

jf (x)j sup
kxk=1

jg (x)j = kfk kgk. This space is

complete since X compact and Y = R or C is complete

Example 34 If A is a normed (resp. Banach) algebra, An := A � ::: � A (n
copies of A) with the norm de�ned by k(x1; ::; xn)k = max

1�i�n
fkxikg is a normed

(resp. Banach) algebra.

Proposition 35 Every isometric function between two Banach Algebras is in-
jective hence

14



Proof. kxk = kT (x)k, then T (x) = 0 implies kT (x)k = kxk = 0 implies x = 0

Proposition 36 Every �nite dimensional algebra is complete

Proof. Every �nite dimensional norm space is complete.

Proposition 37 kek � 1

Proof. kxk = kxek � kxk kek
kek � 1

Proposition 38 kxk�1 �
x�1

Proof.
xx�1 = kek � kxkx�1

That is, 1 � kxk
x�1

kxk�1 � kxk�1 kxk
x�1

kxk�1 �
x�1

For Banach algebras, the condition of being non-unital is super�uous and the
unitization process can be applied to Banach algebras that are already unital,
too. Let A be a Banach algebra. Set A1 := A � C and de�ne the ordinary
operations by (x; �)(y; �) := (xy + �y + �x; ��) and j(x; �)j := kxk + j�j for
all x; y 2 A and �; � 2 C. The algebra A1 is called the Banach algebra
unitization of A. It is straight-forward to check that the above de�nitions
give us an algebra with unit (0; 1). The inequality is also easily seen to be
valid, using which we can show that any Cauchy sequence (xn; �n) converges to
(x; �) if xn �! x and �n �! �. We adopt another approach using the familiar
completion process.
Proof. First, we focus on the construction of (A1; k:k1). The idea is to get
�n = (xn; �n) and �n = (yn; �n) Cauchy sequences and call them equivalent if
k�n � �nk1 �! 0: Let xn and yn be Cauchy sequences in A. We will call two
Cauchy sequences equivalent if they have the same limit i.e.

lim
n!1

kxn � ynk = 0

This will be written as (xn) � (yn) : We can then gather all such equivalent
sequences and form an equivalent class. Indeed, (xn) � (xn) is trivial, so this
relation is re�exive. Also, since the arguments of a norm function are symmetric,
the relation � is symmetric. Finally, if (xn) � (yn) and (yn) � (zn), we have

kxn � znk � kxn � ynk+ kxn;�ynk

Taking limits on both sides and using the fact that the norm function is always
positive, we have

lim
n!1

kxn � znk = 0

so that (xn) � (zn), implying transitivity. Now, the set C is already com-
plete and, therefore, already contains well-de�ned equivalent Cauchy seqeunces.
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Combining these with our previous equivalence class, we can have another equiv-
alence class, the construction of which is similar basing it on component-wise
addition and scalar multiplication with the above vector multiplication. Thus,

we can have for ourselves an equivalence class
�
x̂; �̂

�
=
��
�xn; ��n

�	
of Cauchy

sequences. We can collect all such equivalence classes x̂; ŷ; ::: and form the set
A1. For this set, we can have the norm

kx̂� ŷk1 := lim
n!1

kxn � ynk+ lim
n!1

j�n � �nj

where (xn; �n) 2 x̂ and (yn; �n) 2 ŷ. Note that this is not equal to zero since xn
and yn are members of a di¤erent equivalence class. Furthermore, it is trivial
to show that this newly de�ned norm satis�es the axioms for a norm.
To show that this limit is well-de�ned or that this de�nition is sensible and

not ambiguous with di¤erent results for the same choice of inputs, we will �rst
show that this limit exists and then show that it is independent of the choice of
representatives. First, we have

kxn � ynk+j�n � �nj � kxn � xmk+j�n � �mj+kxm � ymk+j�m � �mj+kym � ynk+j�m � �nj

=)

kxn � ynk+j�n � �nj�kxm � ymk�j�m � �mj � kxn � xmk+j�n � �mj+kym � ynk+j�m � �nj

Similarly,

kxm � ymk+j�m � �mj � kxm � xnk+j�n � �mj+kxn � ynk+j�n � �nj+kyn � ymk+j�m � �nj

=)

kxm � ymk+j�m � �mj�kxn � ynk�j�n � �nj � kxn � xmk+j�n � �mj+kym � ynk+j�m � �nj

=)

� (kxn � xmk+ j�n � �mj+ kyn � ymk+ j�m � �nj) � kxn � ynk+j�n � �nj�kxm � ymk�j�m � �mj

this is basically b � a and �b � a so that we have jaj � b. Hence,

jkxn � ynk+ j�n � �nj � kxm � ymk � j�m � �mjj � kxn � xmk+j�n � �mj+kyn � ymk+j�m � �nj

Now, since xn is Cauchy, we have kxn � xmk < �=4 and similarly kyn � ymk <
�=4; j�m � �nj < �=4 and j�n � �mj < �=4. This in turn implies that for n;m >
N

jkxn � ynk+ j�n � �nj � kxm � ymk � j�m � �mjj < �
so that

lim
n!1

kxn � ynk+ lim
n!1

j�n � �nj = lim
m!1

kxm � ymk+ lim
n!1

j�m � �mj

Hence, kx̂� ŷk1 is just as valid for any Cauchy sequence. It is now routine to
show that (A1; k:k1) is a Banach space.
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We have just proved that for any Banach space (A; k:k), we will have another
metric space (A1; k:k1) by accounting for the limits of the Cauchy sequences,
made possible by clumping all Cauchy sequences with common limits in both
arguements. Let T : A �! A1 be a mapping such that T (a) = (â; 0) where â is
an equivalence class of Cauchy sequences. This is an isometry.

Proposition 39 Multiplication is continuous in Banach algebras

Proof. Let xn �! x and yn �! y:
kxnyn � xyk � kxn � xk kynk+ kyn � yk kxnk �! 0
Given a Banach algebra (A; k:k), for every real number r � 1, (A; r k:k) is

a Banach algebra too. Thus the norm of the unit is not necessarily 1 in unital
Banach algebras. However, the norm of an arbitrary Banach algebra can be
replaced by another norm so that the new norm of the unit to be 1.

Proposition 40 Let (A; k:k) be a unital Banach algebra. Then there exists a
norm k:ko on A such that
(i) The norms k:k and k:ko are equivalent on A,
(ii) (A; k:ko) is a Banach algebra,
(iii) keko = 1:

Proof. We have already proved that B (A) is an algebra. We embed A
into B(A) by left multiplication; Let Lx (y) = xy. Then, Lx (y1 + y2) =
Lx (y1) + Lx (y2) and Lx (�y) = �Lx (y) so that this operator is continuous.
Hence B(A) 6= ?
Next, let L : A �! B (A) be de�ned as L (x) = Lx
Then, L (x+ y) = Lx+y

Now, Lx+y (z) = (x+ y) z = xz + xz = Lx (z) + Ly (z) for any z so that
L (x+ y) = L (x) + L (y)
Similarly, L (�y) = �L (y)
Hence L is a homomorphism. We de�ne the norm k:ko on A to be the

restriction of the operator norm of B(A) to the image of A, that is kxko :=
kLxk = sup

kyk�1
kxyk

For kyk � 1, we have kxyk � kxk kyk � kxk. This shows that kxko � kxk.
On the other hand, we have

kxk
kek =

kxek
kek � sup

y 6=0
kxyk = kxko

This shows that kxk � kek kxko for all x 2 A and completes the proof of (i). It
follows from (i) that A is a closed subalgebra of B(A), so it is a Banach algebra
with the new norm k:ko. Part (iii) is clear from the de�nition.
x 2 A is called invertible if there exists y 2 A so that xy = yx = e. This y

is unique
Proof. y1 = y1e = y1xy2 = y2
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The set of invertible elements is denoted by G(A). This is a group
Proof. If x; y 2 G (A), then x�1; y�1 2 A and (xy)

�
y�1x�1

�
= e

=) xy 2 G (A)
Associative carries over
ee = e =) e�1 = e =) e 2 G (A)
x 2 G (A) =) x�1 2 A =) xx�1 = x�1x = e =) x�1 2 G (A) since�

x�1
��1

is x

Proposition 41 Let A be a Banach algebra. If x 2 A, kxk < 1, then e � x 2

G(A) and (e� x)�1 =
1X
n=0

xn

Proof. From kxnk � kxkn and kxk < 1, we have that
1X
n=0

kxnk converges

as a geometric series with ratio less than 1. An absolutely convergent series

is convergent in a Banach space. Thus,
1X
n=0

xn exists. On the other hand,

(e� x)
1X
n=0

xn = (e� x) lim
k!1

kX
n=0

xn

Since multiplication is continuous, this equals lim
k!1

(e� x)
kX

n=0

xn

= lim
k!1

 
e
kX

n=0

xn � x
kX

n=0

xn

!

= lim
k!1

 
kX

n=0

xn �
kX

n=0

xn+1

!
= lim

k!1

�
e� xk+1

�
= e

Similarly,
1X
n=0

xn(e� x) = e

Hence (e� x)�1 =
1X
n=0

xn

Corollary 42 kx� ek < 1 implies x�1 =
1X
n=0

(e� x)n

Proof. Take y = e� x

Then, (e� y)�1 = x�1 =
1X
n=0

yn = e+
1X
n=1

(e� x)n

Proposition 43 Inversion is a continuous process
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Proof. Let a be an invertible element. Let kx� ak < 1=
a�1. Then, xa�1 � e =(x� a) a�1 � kx� aka�1 < 1 hence by previous corollary applied on xa�1

instead of x, we get ax�1 =
1X
n=0

�
e� xa�1

�n
or x�1 =

1X
n=0

a�1
�
e� xa�1

�n
.

Hence
x�1 � a�1 = 

1X
n=1

a�1
�
e� xa�1

�n
�
a�1

1X
n=1

�
e� xa�1

�n
�
a�1 1X

n=1

a�1 ka� xke� xa�1n�1
=
a�12 ka� xk 1X

n=1

e� xa�1n�1
The latter is a geometric series with ratio

e� xa�1 and is convergent since
1 > kx� ak

a�1 � (x� a) a�1 = xa�1 � e. Using this, we can have for
ourselves the required �. Thus, for any � > 0, we can have � = 1=

a�1,
implying continuity.

Proposition 44 G (A) is open

Proof. Let a 2 G. Let kx� ak < 1=
a�1.

Then,
xa�1 � e = (x� a) a�1 � kx� aka�1 < 1 hence xa�1 � e +

e = xa�1 2 G (A) =) x 2 G (A).

Exercise 45 Construct a sequence of invertible elements in C[�1; 1] which con-
verge to a non-invertible element in C[�1; 1]

Solution 46 Consider functions fn = 1
ne where e is unit. Then, fn �! 0 but

this limit not invertible.

Lemma 47 If xn 2 G (A) such that xn �! x 2 �G (A) = G (A)\G (A)c, thenx�1n  �!1

Proof. Assume the contrary that
x�1n  � k for every n. Then, from kxn � xk <

1=k, we have
e� x�1n x

 � x�1n  kxn � xk < 1 so that x�1n x is invertible
=) x 2 G (A) implying that G (A) is closed.

Exercise 48 Let A be an algebra, with unit e. Is the following true or false?

1. fx = x for all x 2 A =) f = e;

2. 0x = 0 for all x 2 A; true

3. xy = 0 =) x = 0 or y = 0; false

4. xy = zx = e =) x 2 G(A) and y = z = x�1 True

5. xy; yx 2 G(A) =) x; y 2 G(A);

6. xy = e =) x 2 G(A) or y 2 G(A);
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3 Analytic Maps

De�nition 49 A mapping g : 
 � C �! A is analytic at �0 2 
 if

lim
�!�0

g (�)� g (�0)
�� �0

exists. g is said to be analytic on 
 if it is analytic at every point of 


Proposition 50 g : � (a) �! A such that g (�) = (a� �e)�1 is analytic

Proof. g(�)�g(�0)
���0 = (a��e)�1�(a��0e)�1

���0 =
(a��e)�1(e�(a��e)(a��0e)�1)

���0
= (a��e)�1((a��0)�(a��e))(a��0e)�1

���0
= (a��e)�1(a��0e�a��e)(a��0e)�1

���0
= (a��e)�1(�0e��e)(a��0e)�1

���0
= (a� �e)�1 (a� �0e)�1
Now, k(a� �e)� (a� �0e)k � j�� �0j < � says that a � �e �! a � �0e if

� �! �0
Also, inverse function is continuous and, therefore, (a� �e)�1 is continuous.
Hence lim

�!�0

g(�)�g(�0)
���0 = (a� �0e)�2

Theorem 51 (Liouville�s Theorem) Suppose g : C �! A is analytic and
bounded. Then, g is constant.

Proof. Let � 2 A0
be a linear bounded functional on A. De�ne f : C �!

C by f (�) = � (g (�)) for � 2 C. Since g is analytic, then for �0 2 C,
lim
�!�0

g(�)�g(�0)
���0 = g0 (�0) exists. Now,

f(�)�f(�0)
���0 = �(g(�))��(g(�0))

���0 = �
�
g(�)�g(�0)
���0

�
since � is linear. Then,

lim
�!�0

f(�)�f(�0)
���0 = lim

�!�0
�
�
g(�)�g(�0)
���0

�
= � (g0 (�0)). Hence f is analytic.

Further, f is bounded because
jf (�)j = j� (g (�))j
� k�k kg (�)k
� k�kM since g is bounded
Thus, by classical Louiville�s theorem, f is constant. For � 6= �0, � (g (�)� g (�0)) =

� (g (�))�� (g (�0)) = f (�)�f (�0) = 0 since f is constant. That is, � (g (�)� g (�0)) =
0 for all �. Hence g (�) = g (�0)

4 Spectrum

Let x 2 A. Then we de�ne �(x) = f� : x� �e 2 G (A)g, �(x) = f� : x� �e 62 G (A)g,
r (x) = sup

�2�(x)
j�j

Theorem 52 � (x) is closed and bounded
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Proof. We prove that �(x) = C� � (x) is open. Let �0 2 �(x). Then, x� �0e
is invertible. There is a neighbourhood N � A consisting wholly of invertible
elements. Now, for a �xed x, the mapping � 7�! x � �e is continuous. Hence
all x� �e with � close to �0, say j�� �0j < � lie in N so that these x� �e are
invertible. This means that the corresponding � belong to �(x). Thus, every
point of �(x) is an interioir point, implying that � (x) is closed.
Next, if j�j > kxk, then

��1x < 1 so that e � ��1x is invertible. Hence
�
�
e� ��1x

�
= �e� x 2 G (A) =) � 2 �(x).

That is, � 2 �(x) =) j�j � kxk

Corollary 53 r (x) � kxk

Theorem 54 �(x) 6= ?

Proof. Let �(x) = ? and j�j > kxk. Then, (x� �e)�1 = �
X

��n�1xn. For

any non-zero f 2 A0, de�ne g : �(x) �! C such that g (z) = f
�
(x� �e)�1

�
.

This function is de�ned on all C.
Then, f

�
(x� �e)�1

�
= f

�
�
X

��n�1xn
�
= �

X
��n�1f (xn) hence

g (z) has a power series representation about every point and is thus holomor-

phic. If j�j � 2 kxk, then jg (z)j =
���f ��X��n�1xn

���� � kfkX j�j�n�1 kxkn �
kfk
j�j

X
2�n = 2kfkj�j so g is bounded. By Louivelle�s theorem, g is constant.

Since g (z) �! 0 as z �! 1, g (z) = 0. Thus, f (y) = 0 for all f implies
y = (x� �e)�1 = 0, a contradiction

Proposition 55 � 2 � (x) =) �n 2 � (xn)

Proof. We prove the contrapositive. Let n 2 N and let � 2 C be such that
�n 2 �(xn). We can write xn � �ne = (x� �e)

�
�n�1e+ �n�2x+ :::+ xn�1

�
and now multiplication from the right by (xn � �ne)�1 shows that x � �e has
a right inverse. A similar calculation provides a left inverse also, so it follows
that � 2 �(x)

Proposition 56 For � = f� : j�j < 1=r (x)g, then e� �x 2 G (A)

Proof. It is inherently assumed that r (x) 6= 0.
We can combine r (x) � kxk and 0 6= � 2 �, j�j < 1=r (x) or 1= j�j > r (x)
to get r (x) � kxk < 1= j�j
Focusing on the right side, we have kx�k < 1. The result follows.

Theorem 57 r (x) = lim kxnk1=n

Proof. We prove lim sup kxnk1=n � r (x) � lim inf kxnk1=n
� 2 � (x) =) �n 2 � (xn) so that j�nj = j�jn � kxnk for all n 2 N. Hence

r(x) � inf
n
kxnkn, for all n 2 N, which implies the right hand side inequality
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Let � 2 A0 be any functional. From above, we have that � 2 � =
f� : j�j < 1=r (x)g, then e � �x 2 G (A). Hence can de�ne the function f :

� �! C such that f (�) = �
�
(e� �x)�1

�
= �

�X
�nxn

�
=
X

�n� (xn) so

that f is analytic. Moreover, the sequence �n� (xn) �! 0 for each � 2 � and is
bounded. Thus, by the principle of uniform boundedness, �nxn is bounded.
Hence k�nxnk � M for all n and kxnk1=n � M1=n= j�j and consequently
lim sup kxnk1=n � 1= j�j
In summary if r (x) < 1= j�j, then lim sup kxnk1=n � 1= j�j. It follows that

lim sup kxnk1=n � r (x)

Proposition 58 � (ab) = � (ba)

Proof. We prove that e � ba is invertible if and only if e � ab is. The rest
follows. If (e� ab) c = e, then (e+ bca) (e� ba) = e� ba+ bca� bcaba. Given
that c � cab = e, then e � ba + bca � bcaba = e � ba + b (c� cab) a = e and
similarly the converse

Corollary 59 r (ab) = r (ba)

Theorem 60 (Spectral Mapping Theorem) For a polynomial p on C, de-
�ne p(�(x)) as fp(z) : z 2 �(A)g. Then p(�(x)) = � (p(x))

Proof. Let z; � 2 C. Compare the factorisations

p (z)� � = c
nY
i=1

(z � �i (�))

p (x)� �e = e
nY
i=1

(x� �i (�) e)

Here the coe¢ cients c and �i (�) are determined by p and �. When � 2 �(p(x))
then p(x)��e is invertible, which implies that all x��i (�) e must be invertible.
Hence � 2 � (p(x)) implies that at least one of the x��i (�) e is not invertible, so
that �i (�) 2 �(x) for at least one i. Hence p(�i (�))� � = 0, i.e., � 2 p(�(x)).
This proves the inclusion p (� (x)) � � (p(x))
Conversely, when � 2 p(�(x)) then � = p(z) for some z 2 �(x), so that for

some i one must have �i (�) = z for this particular z. Hence�i (�) 2 �(x), so
that x � �i (�) is not invertible, implying that p (x) � �e is not invertible, so
that 2 � (p(x)). This shows that p (� (x)) � � (p(x))

Corollary 61 � (xn) = � (x)n

Proof. For p (x) = xn and p (� (x)) = � (p(x)), we have that � (xn) =
p (� (x)) = � (x)

n

Proposition 62 The linear combination of injective operators is injective
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Proof. It is straightforward to show that a linear combination of linear opera-
tors is linear. Let T; S be bijective on the same domain. Then, T (y) = 0 and
S (y) = 0 implies y = 0 and we need (�T + �S) (x) = 0 implies x = 0. If x 6= y,
then T (x) = 0 so that kerT 6= f0g

Exercise 63 Let T : l2 �! l2 such that T (x1; x2; :::) =
�
x1;

x2
2 ;

x3
3 ; :::

�
. What

is � (T ) and r (T )?

Solution 64 A bit of trickery: T is injective, �I is injective 8� 6= 0. Hence
T � �I is not invertible for � = 0. But this is not the only value since we are
not accounting for surjectivity.
If � 2 � (T ), then (T � �I) is not invertible. That is, ker (T � �I) 6= f0g

=) (T � �I) (x) =
�
x1 � �x1; x22 � �x2;

x3
3 � �x3; :::

�
= (0; 0; :::)

=) � = 1
n if xi 6= 0 for all i

Hence
�
1
n : n 2 N

	
= � (T ). On the other hand, 1 � lim sup 2

q
�
��xn
nk

��2 �
r (T ) � lim inf 2

q
�
��xn
nk

��2 � lim � (2k) = 1 so that r (T ) = 1 where � is the
Riemann Zeta function.

Theorem 65 (Gelfand-Mazur theorem) If G (A) = An f0g, then A �= C

Proof. We can pick a number � 2 �(x) for each x 2 A. So x � �e 2 G (A)
but the only non-invertible element of A is the zero vector, so we must have
that x = �e. The map T : A �! C such that x = �e 7�! � has the desired
properties. That is, f (�e) = �.
This map is well de�ned and injective since �1e = �2e if and only if �1 = �2.

Next, for every �, we can have �e = x so that f is onto. Linearity is clear and
kxk = j�j

Theorem 66 Let A be a unital Banach Algebra. If there exists k < 1 such
that kxk kyk � k kxyk, then A is isometrically isomorphic to C

Proof. Let xn 2 G (A) such that xn �! x 2 G (A)d, then
x�1n  �! 1 so

that kxnk
x�1n  � k x�1n xn

 = k
=) kxnk � k=

x�1n  �! 0
Hence any boundary point of G (A) is zero and not invertible. Now, for

arbitrary x 2 A and � 2 � (x) \ � (x) � C, �e � x 2 G (A) \ G (A)c so that
�e� x = 0

=) A = f�e : � 2 Cg
Thus we can de�ne f : A �! C such that x = �e 7�! �

5 Multiplicative linear functionals

De�nition 67 A linear functional f : A �! C is mulitplicative if f (xy) =
f (x) f (y) for all x; y 2 A
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Example 68 For A = C, f (z) = z

Example 69 For A = Cn, fi (z1; z2; :::; zn) = zi

Example 70 A = C (X) where X =compact Hausdro¤ ; Fx (f) = f (x), the
default functional on C (X)

Proposition 71 Let A be a commutative unital Banach algebra and f 6= 0 be
a multiplicative functional on A. Then

1. f (e) = 1

2. f (x) = 0 8x 2 G (A)

3. f
�
x�1

�
= f (x)

�1

Proof. Since f 6= 0, so there exists at least one a 2 A such that f (a) 6= 0 and is
therefore invertible. a = ae so that f (a) = f (ae) = f (a) f (e). Apply f (a)�1

on both sides
Next, let x 2 G (A). Then, f

�
xx�1

�
= f (x) f

�
x�1

�
= f (e) = 1. Now,

f (x) = 0, then 0 = 1, a contradiction.
Apply f (x)�1 on both sides to get the last answer.

Theorem 72 Let A be a commutative unital Banach algebra and f 6= 0 be a
multiplicative functional on A. Then f is continuous

Proof. Let f (x) = �. If jf (x)j > kxk, then j�j > kxk so that
x
�

 < 1 so that
e � x

� 2 G (A). Thus, f
�
e� x

�

�
6= 0 or 1 � 1

�f (x) 6= 0 so that f (x) 6= �. A
contradiction.
Hence jf (x)j � kxk so that f is bounded and any linear functional is

bounded if and only if it is continuous.
Also, kfk = sup

kxk=1
jf (x)j � sup

kxk=1
kxk = 1

Conversely, kfk = sup
kxk=1

jf (x)j � jf (e)j = 1

Hence kfk = 1

De�nition 73 The collection of all multiplicative linear functionals is called
the set of characters of A or the structure space of A.

A multiplicative linear functional is also called a character. This set is de-
noted by �(A).
�(A) is also called the maximal ideal space, for reasons that will become

clear in the next topic.
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6 Ideals

De�nition 74 Let A be a commutative unital Banach Algebra. A subset I of
A is said to be an ideal of A if

1. I is a subspace of A

2. If a 2 A, x 2 I, then ax 2 I

f0g and A are improper ideals of A. All other ideals are proper ideals.

De�nition 75 A proper idealM of A is said to be maximal if it is not properply
contained in any other proper ideal of A. That is, if M � K � A, then either
M = K or K = A

Theorem 76 Let A be a commutative Banach Algebra. Then, A is a division
algebra if only if it has no non-trivial ideal.

Proof. Suppose A is a division algebra. Let I 6= f0g be a non-zero ideal of A.
We will show that A = I. Let 0 6= x 2 I
=) x 2 A
=) there exists x=1 2 A such that xx�1 = x�1x = e 2 A
Now, for x 2 I and x�1 2 A
=) xx�1 = e 2 I
Then, for any a 2 A, ae = a 2 I by de�nition of ideal
Hence A = I and A has no non-trivial ideal
Conversely, assume that A has no non-trivial ideal. We show that A is a

division algebra.
Let 0 6= x 2 A. Consider I = fxy : y 2 Ag
Then, for a; b 2 I, there exists y1; y2 2 A such that a = xy1 and b = xy2.

For �; � 2 C,
�a+ �b
= �xy1 + �xy2
= x (�y1 + �y2) = y since A is closed.
Hence �a + �b 2 I. Next, for a 2 A and i 2 I, i = xy1 and ai = axy1 =

xay1 = xy 2 I. Hence I is an ideal.
But since A has no non-trivial ideals, then either I = f0g or I = A. If

I = f0g, then x = 0, contradiction. Hence I = A. Hence e 2 I. Thus for x 2 A,
there exists y such that xy = e. Since x was arbitrary, therefore A is a division
algebra.

Theorem 77 If A is a commutative Banach Algebra, then I is a proper ideal
of A when I is a proper ideal of A:

Proof. We �rst show that I is an ideal of A. Take x; y 2 I. Then, there exists se-
quences xn, yn 2 I such that xn �! x and yn �! y. Now, kxn + yn � (x+ y)k �
kxn � xk + kyn � yk �! 0. Hence xn + yn �! x + y. Next, for � 2 C,
k�xn � �xk = j�j kxn � xk �! 0. Hence �xn �! �x. Hence for x; y 2 I,
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we have �x and x + y 2 I. Thus, I is a subspace of A. Now, for a 2 A,
kax� axnk � kak kxn � xk �! 0. Hence ax 2 I. Therefore, I is an ideal. To
show that I is proper, assume by way of contradiction that it is not. Then,
I.= f0g or I = A. In the former, we since I � I, we have I = f0g, implying
the contradiction that I is improper. If I = A, then e 2 A implies e 2 I. Thus
e is a limit point of I. By de�nition of limit point, for every nbd N� (e), we
have N� (e) \ I 6= ?. We know that G (A) is open. Thus, we must also have
G (A) \ I 6= ?. Hence there exists x 2 G (A) and x 2 I. This implies there
exists x�1 2 A such that xx�1 = x�1x = e. By de�nition of ideal, e 2 I. Then,
for any a 2 A, ae = a 2 I by de�nition of ideal. Hence A = I implying the
contradiction that I is improper.
Hence I is proper.

Theorem 78 Let M be a maximal ideal in a commutative banach algebra with
unity A. Then, M is closed.

Proof. In order to show that M is closed, we show that M = M . We already
have M � �M . By previous theorem, M is proper implies �M is proper. But M
is maximal. Thus, M � �M � A implies either M = �M or �M = A. The latter is
impossible since �M is proper. Hence M = �M

Theorem 79 Let A be a commutative Banach Algebra. Then, no proper ideal
contains any invertible element of A

Proof. Assume by way of contradiction that a proper ideal I of A contains an
invertible element. Then, G (A) \ I 6= ?. Hence there exists x 2 G (A) and
x 2 I. This implies there exists x�1 2 A such that xx�1 = x�1x = e. By
de�nition of ideal, e 2 I. Then, for any a 2 A, ae = a 2 I by de�nition of ideal.
Hence A = I implying the contradiction that I is improper.

Theorem 80 Each proper ideal of A is contained in some maximal ideal of A

Proof. Let I be any proper ideal of a A. De�ne a set P = fJ � A : J is ideal
and I � Jg. Then, (P;�) is a poset
a) clearly, J � J for any J 2 P
b) If J � K and K � J for J;K 2 P , then J = K
c) If J � K and K � L for J;K;L 2 P , then J � L
Hence (P;�) is a poset. Let L be a totally ordered subset of P . This means

that L is a set of proper ideals of A which contain I and for every two elements
J;K of L either J � K or K � L. Let ML =

[
J2L

J . Since ML is the union of

every J 2 L, we have that ML =
[
J2L

J � J for every J 2 L. That is, ML is an

upper bound for L. To show that ML is in P , we need to check that ML is a
proper ideal of A and contains I.
Since each J is a proper ideal, we have e 62 J for each J 2 L. This implies

that e 62ML, hence that ML 6= A.
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Next, for a; b 2ML. Then, there is some Ja; Jb 2 L with a 2 Ja and b 2 Jb.
Since L is totally ordered, then either Jb � Ja or Ja � Jb. If Ja � Jb, then
a; b 2 Jb implies �a+�b 2 Jb for any �; � 2 C. Also, since Jb �ML, this implies
that �a+ �b 2 ML. Again, if Jb � Ja, then a; b 2 Ja implies �a+ �b 2 Ja for
any �; � 2 C =)�a+ �b 2ML. Hence ML is a subspace.
Next, for x 2 ML and a 2 A, we have x 2 J for some J � ML. Hence by

de�nition of ideal, xa 2 J
=)ax 2ML
Hence ML is an ideal
Clearly, I � J �ML
Thus, ML 2 P
Having veri�ed the hypothesis of Zorn�s lemma, we are guaranteed the exis-

tence of some maximal element M 2 P of P . Thus, M is a maximal ideal and
I �M . Since I was arbitrary, this completes the proof.

Theorem 81 Let A be a unital commutative Banach Algebra. Then, for any
linear functional � : A �! C, if I is an ideal of A, then � (I) is an ideal of C

Proof. Let I be an ideal of A. We show that � (I).
Let a; b 2 � (I). Then, there exists x; y 2 I such that a = � (x) and

b = � (x). Now, for �; � 2 C, we have
�� (x) + �� (y)
= � (�x+ �y)
Now, I is a subspace implies �x+ �y 2 I. Hence � (�x+ �y) 2 � (I)
or �� (x) + �� (y) 2 � (I)
or �a+ �b 2 � (I)
Next, if a 2 � (I), then there exists x 2 I such that � (x) = a 2 � (I) : For

z 2 C, since I is a subspace and closed under scalar multiplication, we must
have zx 2 I. Hence � (zx) 2 � (I). Now, za = z� (x) = � (zx), thus za 2 � (I)
Hence � (I) is an ideal of C.

Theorem 82 Let A be a commutative unital Banach Algebra and f 2 �(A).
Then, ker f is a maximal ideal of A

Proof. To show that ker f is a maximal ideal, we �rst show that ker f is an
ideal of A. Since f is a multiplifcative linear functional, so f (0) = 0. Thus,
0 2 ker f hence ker f is non-empty. Let x; y 2 ker f and �; � 2 C. Then,
f (�x+ �y) = �f (x) + �f (y) = 0. Hence �x + �y 2 ker f , implying that
ker f is a subspace. For x 2 ker f and a 2 A, f (ax) = f (a) f (x) = 0. Hence
ax 2 ker f
To show that ker f is maximal, assume that there exists an ideal M of A

such that ker f � M � A. Since M is proper, and f is linear, so by above
theorem, f (M) � C is a proper ideal of C. But the only ideals of C are f0g or
C itself so f (M) = f0g or f (M) = C
If f (M) = f0g, then ker f =M
If f (M) = C, then M = A
That is, ker f �M � A implies ker f =M or M = A
Hence ker f is maximal.
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7 Quotient Algebra

Let X be a normed space and M be a closed subspace of X. We de�ne an
equivalence relation on X by x � y modm i¤ y� x 2M . Now we show that �
is an equivalence relation.
1) Since M is a subspace of X, so 0 2M . Hence x� x 2M so that x� x
2) x � y implies x� y 2 M . Since M is a subspace, then it must also have

additive inverses, implying that � (x� y) = y � x 2M . Hence y � x
3) Let x � y and y � z. Then, x � y 2 M and y � z 2 M . Since M is

a subspace, it is closed under addition. Hence x � y + y � z = x � z 2 M .
Therefore, x � z
For x 2M , we de�ne an equivalence class Cx = fy 2 X : y � xg
= fy 2 X : x� y 2Mg
= fy 2 X : x� y = m for some m 2Mg
= fy 2 X : y = x+m for some m 2Mg
= x+M
= [x]
For x 6= y, we have Cx \ Cy = ?

Proof. Let Cx \ Cy 6= ?
Then, there exists a 2 Cx \ Cy
Thus, a � x and a � y
By re�exivity, x � a and a � y
By transitivity, x � y
That is, x� y 2M
or x� y = m for some m
But 0 2M
Hence x� y = 0

De�nition 83 The set of all equivalence classes of X is denoted and de�ned
as X=M = fCx : x 2 Xg
= fx+M : x 2 Xg

Note that the set of all equivalence classes of X form a partition of X
i.e. X =

[
x2X

Cx and Cx \ Cy = ? or Cx = Cy

Theorem 84 If X is a Banach Algebra, M is closed ideal of X. Show that
X=M is also a Banach Algebra

Proof. Let us de�ne+, � by (x+M)+(y +M) := (x+ y)+M , (x+M) (y +M) :=
xy +M and � (x+M) := �x+M
We show that these operations are well-de�ned. Let x1+M = x2+M . and

y1 +M = y2 +M
Then, x1 � x2 2M and y1 � y2 2M
That is, there exists mx;my 2M such that x1� x2 = mx and y1� y2 = my

In other words, x1 = mx + x2 and my + y2 = y1
We have to show that (x1 + y1) +M = (x2 + y2) +M
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In other words, Cx1+y1 = Cx2+y2
Let a 2 Cx1+y1 , then a = x1 + y1 +ma for some ma 2M
=) a = mx + x2 +my + y2 +ma

=) a = x2 + y2 +m for some m 2M . Here m = ma +mx +my. Here, we
have used the fact that addition is commutative.
Thus, a 2 Cx2+y2 . The converse can be proved similarly.
Now we show scalar multiplication is well-de�ned.
Let x+M = y +M () x� y = m for some m 2M
We have to show that �x+M = �y +M
Now, �m 2M since M is a subspace. Hence �x��y 2M () �x+M =

�y +M
Finally, we show that multiplication is well-de�ned. To this end, we prove

that m (x+M) =M
Let a 2
Let x1 +M = x2 +M . and y1 +M = y2 +M
Then, x1 � x2 2M and y1 � y2 2M
That is, there exists mx;my 2M such that x1� x2 = mx and y1� y2 = my

In other words, x1 = mx + x2 and my + y2 = y1
We have to show that (x1y1) +M = (x2y2) +M
Let a 2 (x1y1) +M . Then, a = x1y1 +m1 for some m1 2M
a = (mx + x2) (my + y2) +m1

= mxmy +mxy2 + x2my + x2y2 +m1

Since M is an ideal, mxmy +mxy2 + x2my +m1 2M
Hence mxmy +mxy2 + x2my +m1 = m for some m 2M
Thus, a = x2y2 +m
a 2 Cx2y2
Similarly, the converse can be proved.
Thus, the operations are well-de�ned. We show that X=M is a Banach

Algebra. First we show that it is a vector space.
1) x+M + (y +M + z +M)
= x+M + (y + z +M)
= x+ (y + z) +M
= (x+ y) + z +M
= (x+ y +M) + (z +M)
(x+M + y +M) + z +M
2) x+M + y +M
= x+ y +M
= y + x+M
= y +M + x+M
3) The additive identity isM because (x+M)+M =M+(x+M) = x+M
4) Let x+M 2 X=M be arbitrary. Then, x 2 X
=) �x 2 X
=) (�x)+M 2 X=M . This is the additive identity for every x+M 2 X=M
5) � [(x+M) + (y +M)]
= � (x+ y +M)
= �x+ �y +M
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= (�x+M) + (�y +M)
6) (�+ �) (x+M)
= [(�+ �)x] +M
= �x+ �x+M
= (�x+M) + (�x+M)
= � (x+M) + � (x+M)
7) � (� (x+M))
= � (�x+M)
= ��x+M
= (��)x+M
= (��) (x+M)
8) 1 (x+M)
= 1x+M
= x+M
Next, we show that this is an algebra
1) (x+M) (y +M) = xy +M
Since xy 2 X, xy +M 2 X=M . Hence multiplication is closed.
2) [(x+M) (y +M)] (z +M)
= (xy +M) (z +M)
= (xy) z +M
= x (yz) +M
= x [(y +M) (z +M)] +M
= (x+M) [(y +M) (z +M)]
3) (x+M) [(y +M) + (z +M)]
= (x+M) [y + z +M ]
= x (y + z) +M
= xy + xz +M
= (xy +M) + (xz +M)
= [(x+M) (y +M)] + [(x+M) (z +M)]
4) � [(x+M) (y +M)]
= � (xy +M)
= � (xy) +M
= (�x) y +M
= (�x+M) (y +M)
= [� (x+M)] (y +M)
The third last line is also equal to x (�y) +M
= (x+M) ((�y) +M)
= (x+M) [� (y +M)]
Now, we prove that this is a Normed space. We de�ne k:k : X=M �! R by

kx+MkX=M = inf
m2M

kx�mk. To show that this is a norm,
1) Since for x 2 X, m 2M � X, x�m 2 X. Hence kx�mk � 0
=) inf

m2M
kx�mk � 0

=) kx+MkX=M � 0
Also, kx+MkX=M = 0
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() inf
m2M

kx�mk = 0
That is, the distance from x to M is zero. But M is closed. Hence

inf
m2M

kx�mk = 0
() x 2M
() x+M =M . This is the zero of X=M
2) Let � 2 C
Then, k� (x+M)kX=M
= inf

m2M
k�x� �mk

= inf
m2M

j�j kx�mk
= j�j inf

m2M
kx�mk

= j�j kx+MkX=M
3) Let x+M;y +M 2 X=M . Then,
kx+M + y +MkX=M
= kx+ y +MkX=M
= inf

m2M
kx+ y �mk

= inf
m2M

x� 1
2m+ y �

1
2m


� inf
m2M

x� 1
2m
+ inf

m2M

y � 1
2m


= kx+MkX=M + ky +MkX=M
To show that this is a Normed Algebra,
k(x+M) (y +M)kX=M
= kxy +MkX=M
= inf

m2M
kxy �mk

� inf
m2M

kxy � xw �my + wmk
= inf

m2M
kx (y � w)�m (y � w)k

= inf
m2M

k(x�m) (y � w)k
� inf

m2M
k(x�m)k k(y � w)k

= inf
m2M

kx�mk inf
w2M

ky �mk
kx+MkX=M ky +MkX=M
For completeness, let an =

X
xn+M be an absolutely convergent series in

X=M . Then,X
kxn +Mk <1

But kxn +Mk = inf
m2M

kxn �mk.
By de�nition of in�mum, for each n, there exists vn 2M such that kxn � vnk �

kxn +Mk+ 1
2n

Now,
X

kxn � vnk �
X�

kxn +Mk+ 1
2n

�
=
X

kxn +Mk+
X

1
2n <1

Thus,
X

kxn � vnk <1
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That is,
X

xn � vn converges absolutely in the Banach Algebra X. Thus,
it converges in the ordinary sense.

Let
X

xn�vn = x 2 X. Then,

"
NX
n=1

xn +M

#
� (x+M)

 =

NX
n=1

(xn � x) +M


�

NX
n=1

(xn � x)� vn


=


NX
n=1

(xn � vn)� x
 �! 0 as N �!1

That is,


"
NX
n=1

xn +M

#
� (x+M)

 �! 0 as N �!1

So that the sequence of partial sums of the series an converges. Hence X=M
is complete

Theorem 85 An ideal M of a commutative unital Banach Algebra A is maxi-
mal if and only if A=M is a division algebra

Proof. Let M be a maximal ideal of A. Consider the canonical map � : A �!
A=M de�ned by � (x) = x +M . For x = y, we clearly have x +M = y +M
hence � is well-de�ned.
We show that � 2 �(A)
� (x+ y) = x+ y +M
= x+M + y +M = � (x) + � (y)
Next, � (�x) = �x+M = a (x+M) = �� (x)
Finally, � (xy) = xy +M = (x+M) (y +M) = � (x)� (y)
Since M is maximal, M is a proper subspace of A so there exists x 2 AnM .

Consider J = fax+ y : a 2 A; y 2Mg
Now, 0 2 A and 0 2 M . Hence 0x + 0 = 0 implies 0 2 J . Next, let p =

a1x+y1 and q = a2x+y2 belong to J . Then, p�q = (a1 � a2)x+(y1 � y2) 2 J .
Furthermore, for � 2 A, �ax+ �y 2 J . Thus, J is an ideal of A. Since, e 2 A,
0 2 M for ex + 0 = x 2 J implies x 62 M . . Hence M � J . By maximality
of M , we have J = A. Since e 2 A, we have ax0 + y0 = e and, therefore,
� (ax+ y) = � (e)

=) � (a)� (x) + � (y) = � (e)
Since y 2M , � (y) = 0. Thus, � (a)� (x) = � (e). That is, for any arbitrary

element � (x) 2 A=M ., we have an inverse � (a)
Conversely, suppose that A=M is a division algebra. We have to show that

M is a maximal ideal of A. For this, let us suppose that A is not maximal. Then,
either M = A or there exists an ideal J of A such that M � J � A.
If M = A, then A=M = f0g. That is, A=M has no non-zero element. This

contradicts the fact that A=M is a division algebra.
If M � J � A, then J=M � A=M
And J=M is an ideal of A=M . So that J=M 6= f0g but this contradicts the

fact that A=M is a division algebra since a division algebra has no maximal
ideals.
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Theorem 86 If M is a maximal ideal of A, then there exists f 2 �(A) such
that ker f =M

Proof. Since M is a maximal ideal of A, then A=M is a division algebra. By
the Gelfand-Mazur theorem, A=M is isometrically ismorphic to C.
Denote this by 	 : A=M �! C. De�ne � : A �! A=M by � (x) = x+M .
Let f = 	 � �. Then, f (a+ b) = (	 � �) (a+ b)
= 	 (� (a) + � (b)) = 	 (� (a)) + 	 (� (b)) = f (a) + f (b)
Furthermore, f (�a) = 	 (� (�a)) = 	 (�� (a)) = �	(� (a)) = �f (a)
Finally, f (ab) = 	 (� (ab)) = 	 (� (a)� (b)) = 	 (� (a))	 (� (b))
Hence f 2 �(A). Now, ker f = fx 2 A : f (x) = 0g
or ker f = fx 2 A : 	 � � (x) = 0g
or ker f =

n
x 2 A : � (x) = b0o since 	 is one-one

or ker f = fx 2 A : � (x) =Mg
or ker f = fx 2 A : x+M =Mg
or ker f = fx 2 A : x 2Mg
That is, ker f =M

Theorem 87 Let A be a commutative Banach unital Algebra and f; g 2 �(A)
such that ker f = ker g =M where M is maximal. Then, f = g

Proof. As M is maximal, there exists x0 2 AnM . Then, x0 2 ker g. Hence
g (x0) 6= 0. Let � = g(x)

g(x0)
and let m = x � �x0 for m;x 2 A Then, g (m) =

g (x)� �g (x0)
=) g (x)� g(x)

g(x0)
g (x0) = 0. Hence m 2 ker g =M

For f (m) = f (x)� �f (x0)
We have f (m) = 0 and, therefore, f (x) = �f (x0)
=) f (x) = g(x)

g(x0)
f (x0)

or f (x) = �g (x) where � = f(x0)
g(x0)

. This holds for all x. Hence f = �g

Now, � [g (x0)]
2
= �g

�
x20
�
= f

�
x20
�
= �2 [g (x0)]

2

Hence � = �2. This is only valid if � = 0 or � = 1. If � = 0, then f; g
are trivial and ker f = ker g = M = A, implying the contradiction that M is
improper. Thus, � = 1 and f = g
Thus, there is a one-one correspondence between the set of maximal ideals

of A and �(A), justifying the name "maximal ideal space".

Theorem 88 Let A be a unital, commutative Banach Algebra and let x 2 A.
Then, � 2 � (x) if and only if � = f (x) for some f 2 �(A)

Proof. Let � 2 � (x). Then, x � �e is not invertible. Since for any invert-
ible element x, f (x) 6= 0 so, there exists at least one f 2 �(A) such that
f (x� �e) = 0. Or f (x) = �
Conversely, suppose that f (x) = � for some f 2 �(A). Then, f (x� �e) = 0

or x� �e is not invertible. Hence � 2 � (x)
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Exercise 89 Show that there is only one multiplicative linear functional on C,
which is f (z) = z

Solution 90 Let f 2 �(C). Then, f(1) = 1 implies f(q) = qf(1) = q for
q 2 Q. That is f jQ = I. Now for any f; g 2 �(C) ; f; g are identity on Q
and f; g are continuous. Let x be an irrational limit for a sequence of rational
terms xn. Then, f (xn) = g (xn). By continuity, we must have f (x) = g (x)
after the application of limits on both sides. Since x was arbitrary, therefore
f jR = I = gjR. Finally, since f(i)2 = f(i2) = f(�1) = �1 and since the
only roots of x2 = �1 are �i, then f(i) = i or f(i) = �i. That is, for any
f; g 2 �(C), f (z) = z or f (z) = z But conjugation is not a multiplicative
linear functional. Hence f(z) = z is the only multiplicative linear functional

Solution 91 Let f 2 �(A). Then, f (�z) = �f (z). But this scalar is also a
vector. Hence f (�z) = f (�) f (z)
That is, �f (z) = f (�) or f (�) = � for any � 2 C and f (z) 6= 0 for

z 6= 0. Since the invertible elements of C and hence those elements for which
f (z) 2 G (C) is Cn f0g, it follows that ker f = f0g. Hence f (z) = z is the only
multiplicative linear functional.

8 Weak Convergence

We know that in calculus one de�nes di¤erent types of convergnce. We�ve seen
such types: ordinary convergence, absolute convergence and uniform conver-
gence. We now move on to consider a weaker version of convergence but in
order to justify the word "weak", we will call our usual understanding of con-
vergence as strong convergence. More speci�cally,

De�nition 92 A sequence (xn) in a normed space X is said to be strongly
convergent if there is an x 2 X such that lim

n!1
kxn � xk = 0

Again, this will be shortened to xn �! x or lim
n!1

xn = x. x will be called a

strong limit.
Weak converge provides a sense in which a sequence is convergent based on

some particular support.

De�nition 93 A sequence (xn) in a normed space X is said to be weakly con-
vergent if there is an x 2 X such that for every f 2 X 0 lim

n!1
jf (xn)� f (x)j =

0.

This will be written xn
w�! x. In a sense, we are mapping each member of a

sequence to a natural or real number, depending on the underlying �eld. That
is, we have a sequence (an) = (f (xn)). This allows us to resort to the familiar
theorems speci�c for real and complex numbers.

Theorem 94 Let xn
w�! x. Then,
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1. The weak limit x of (xn) is unique

2. Every subsequence of (xn) converges weakly to x

3. The sequence kxnk is bounded

Proof. 1. Suppose xn
w�! x and xn

w�! y. Then, f (xn) �! f (x) and
f (xn) �! f (y). Since f (xn) is a sequence of real or complex numbers, its limit
is unique. That is, f (x) = f (y)

=) f (x� y) = 0 for all f
Hence x = y
2. This follows from the fact that if a real or complex sequence is convergent,

then every subsequence converges to the same limit as the sequence
3. Since (f (xn)) is convergent, it is bounded, say jf (xn)j � cf for all n,

where cf depends on f but not on n. De�ne gxn (f) = f (xn). Then, gxn (f) is
bounded for every f 2 X 0. Since X 0 is complete regardless of the completion
of X, we can apply the uniform boundedness theorem to X 00 and get kgxnk
bounded. By another corollary, kxnk = kgxnk
Finite dimensional spaces make life easier; here�s another reason why:

Theorem 95 In a �nite dimensional space, strong convergence and weak con-
vergence are equivalent

Proof. First we show that strong convergence implies weak convergence with
the same limit. If xn �! x. Then, for any f 2 X 0 jf (xn)� f (x)j � kfk kxn � xk �!
0 hence xn

w�! x
Conversely, suppose xn

w�! x and dimX = k. Then, xn = �
(n)
1 e1 + ::: +

�
(n)
k ek and x = �1e1+:::+�kek. By assumption, f (xn) �! f (x) for any f . We

take in particular f1; :::; fk de�ned by fj (ek) = �jk. Then, fj (xn) = �
(n)
j and

fj (x) = �j hence fj (xn) �! fj (x). From this, we readily obtain kxn � xk =
kX
j=1

�
�
(n)
j � �j

�
ej

 �
kX
j=1

����(n)j � �j
��� kejk �! 0 hence xn �! x

As might have been guessed, there are in�nite dimensional spaces where a
sequence may converge weakly but not strongly:
Take an orthonormal sequence (en) in a Hilbert SpaceH. Since every f 2 H 0

has a Riesz representation, f (x) = hx; zi. Hence f (en) = hen; zi. From the

Bessel inequality,
1X
j=1

jhen; zij2 � kzk2 so that the series on the left converges to

zero. That is, hen; zi = f (en) �! 0. Since f in arbitrary, we see that en �! 0

but that is true since ken � emk2 = hem � en; em � eni = 2

Exercise 96 If xn 2 C [a; b] and xn
w�! x 2 C [a; b], show that (xn) is point-

wise convergent on [a; b]
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Solution 97 We have to show that xn (t) �! x (t) for every t 2 [a; b]. Func-
tionals ft0 of C[a; b] are de�ned for vectors x (t) 2 C[a; b] such that ft0 (x (t)) =
x (t0) for t0 2 [a; b]. Hence, for any sequence of functions (vectors) xn (t) in
C[a; b], xn (t)

w�! x (t)
=) ft0 (xn (t)) �! ft0 (x (t))
=) xn (t0) �! x (t0) for any t0 2 C[a; b]. Hence weak convergence implies

point-wise convergence in C[a; b]

Exercise 98 Let X and Y be normed spaces., T 2 B (X;Y ) and (xn) a se-
quence in X. If xn

w�! x0, show that T (xn)
w�! T (x0)

Solution 99 Let xn
w�! x0. Then, jf (xn)� f (x)j �! 0. From kfk =

sup
0 6=x2X

jf(x)j
kxk , we have kxk = sup

0 6=f2X0

jf(x)j
kfk . Thus, kxn � x0k = sup

0 6=f2X0

jf(x�x0)j
kfk so

that for any g 2 Y 0
and for any T 2 B (X;Y ), we have jg (T (xn))� g (T (x))j =

jg (T (xn)� T (x))j = jg (T (xn � x))j
� kgk kT (xn � x)k
� kgk kTk kxn � xk
= kgk kTk sup

0 6=f2X0

jf(x�x0)j
kfk �! 0

Weak convergence covers scalar multiplication and vector addition.

Lemma 100 If (xn) and (yn) are sequences in the same normed space X, show
that xn

w�! x and yn
w�! y implies xn + yn

w�! x+ y as well as �xn
w�! �x

Proof. Let xn
w�! x and yn

w�! y. Then, for all � > 0, we have N1 such that
jf (xn)� f (x)j < �=2 8n � N1 and N2 such that jg (yn)� g (y)j < �=2 8n � N2
for all g; f 2 X

0
. Let N = max fN1; N2g and choose the particular f = g.

Then, jf (xn + yn)� f (x� y)j
= jf (xn)� f (x) + f (yn)� f (y)j
= jf (xn)� f (x) + g (yn)� g (y)j � jf (xn)� f (x)j+ jg (yn)� g (y)j < � for

all n � N
=) f (xn + yn) �! f (x+ y)

=) xn + yn
w�! x+ yy � x

Similarly, we can have jf (xn)� f (x)j < �= j�j and jf (�xn)� f (�x)j
= j�f (xn)� �f (x)j
= j�j jf (xn)� f (x)j < �
=) �xn

w�! �x

Exercise 101 Show that xn
w�! x0 implies lim

n!1
inf kxnk � kx0k
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Solution 102 For any weakly convergent sequence xn
w�! x0 6= 0, we can

choose nk such that the subsequence kxnkk �! lim
n!1

inf kxnk. Note that this
does not violate the fact that every subsequence converges weakly to x0. Now, by
Hahn-Banach theorem, there exists f 2 X 0

such that kfk = 1 and f (x0) = kx0k.
Then, jf (xnk)j � kfk kxnkk = kxnkk and
=) lim

nk!1
jf (xnk)j � lim

nk!1
kxnkk

=)
���� limnk!1

f (xnk)

���� � lim
n!1

inf kxnk

=)
����f � lim

nk!1
xnk

����� � lim
n!1

inf kxnk

=) jf (x0)j � lim
n!1

inf kxnk since every subsequence converges weakly to the
same limit
=) kx0k � lim

n!1
inf kxnk

Exercise 103 If xn
w�! x0 in a normed space X, show that x0 2 �Y where

Y = span (xn)

Solution 104 Assume that x0 62 Y =) x0 2 X � Y . Then, the conditons
satisfy the statement of theorem 4.6-7. Hence there exists f 2 X

0
such that

jf (y)j = 0 for all y 2 Y and f (x0) = � = inf
y2Y

ky � x0k

Since Y = span (xn), then xn 2 Y =) f (xn) = 0 for all n. Hence
f (xn) �! f (x0) implies f (x0) = 0 = inf

y2Y
ky � x0k =) x0 2 Y . Contra-

diction.

Exercise 105 If (xn) is a weakly convergent sequence, show that there is a se-
quence (ym) of linear combinations of elements of (xn) which converges strongly
to x0

Solution 106 From the previous exercise, we have that any element ym of Y
is a linear combination of (xn). Since x0 2 Y . therefore either x0 is a limit
point or it belongs to Y . In the �rst case xn �! x0 strongly. If x0 is not a limit
point, then it belongs to Y and is, therefore, a linear combination of (xn), in
which case for any linear functional, f (x0) = f (

P
�nkxnk) implying divergence

of the sequence f (xn), which is a contradiction.

Corollary 107 Any closed subspace Y of a normed space X contains the limits
of all weakly convergent sequences of elements.

De�nition 108 A weak Cauchy sequence in a real or complex normed space
X is a sequence (xn) in X such that for every f 2 X 0, the sequence (f (xn)) is
Cauchy in R or C.

37



Note that lim
n!1

f (xn) exists. A weak Cauchy sequence is bounded

Proof. Let xn be a weak Cauchy sequence. Then, for any given � > 0, we
can �nd N 2 N such that jf (xn)� f (xm)j < � for n;m � N . Choose b =
max ff (x1) ; f (x2) ; :::; f (xN�1) ; �g. Then, jf (xn)j � b for all n.
Furthermore, every non-empty subset containing a weak Cauchy sequence is

bounded
Proof. Let A be a set in a normed space X such that every nonempty subset

of A contains a weak Cauchy sequence. Assume that A is not bounded. Then,
there exists an unbounded sequence in A such that kxnk �! 1. Since every
subsequence converges to the same limit, we can �nd a weak Cauchy subsequence
which is unbounded, a contradiction.

De�nition 109 A normed space X is said to be weakly complete if each weak
Cauchy sequence in X converges weakly in X.

Lemma 110 If X is re�exive, then X is weakly complete.

Proof. If a normed space is re�exive, then it is complete. It remains to prove
that every complete space is weakly complete. This follows from the fact that
strong convergence implies weak convergence.

9 Weak Topology

De�nition 111 Let X be a set and let � be a family of subsets of X. � is called
a topology on X if

1. X;? 2 �

2. Any union of elements of � is an element of �

3. Any intersection of �nitely many elements of � is an element of �

De�nition 112 A subset Z of X is called � -open or simply open if Z 2 � . A
is called closed if Zc 2 � : For x 2 X, N � X is called neighbourhood of x
if there exists U 2 �X such that x 2 U � N . A collection B of subsets of X is
called a basis if a) 8x 2 X, 9B 2 B such that x 2 B and b) if B1; B2 2 B and
x 2 B1 \B2, then 9B 2 B such that B � B1 \B2

A direct consequence of this is as follows: � =

([
i

Bi : Bi 2 B and i 2 I
)
.

C = fU : 8U 2 � and 8x 2 U;9V : x 2 V � Ug is a basis. S =
n
A : A � X and

[
A = X

o
is called a subbasis. In this case, � =

([
B : B =

n\
i=1

Si for Si 2 S
)
. Thus,

a subbasis is formed by taking �nite intersections of elements of the basis and,
therefore S � B.
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De�nition 113 Let (X; �X) and (Y; �Y ) be two topological spaces. Then, f :
(X; �X) �! (Y; �Y ) is called continuous if for every V 2 �Y , we have f�1 (V ) 2
�X

De�nition 114 Let fXi : i 2 Ig be a family of topological spaces. Consider

X =
Y
i2I
Xi

Then, X is called product topology or Tychono¤ Topology if it has the
fewest open sets for which all projections projection pi : X �! Xi are continu-
ous.

Theorem 115 (Tychono¤ Theorem) Assuming the Axiom of Choice, the
product of a family of compact space is compact in the product topology.

De�nition 116 Let �1 and �2 be two topologies on a set X, and assume �1 �
�2; that is, every �1-open set is also �2-open. Then we say that �1 is weaker
than �2, or that �2 is stronger than �1:

An equivalent way of saying this is as follows: Bi is a basis for � i, then B2 �
B1. Furthermore, in this situation, the identity mapping on X is continuous
from (X; �2) to (X; �1).

De�nition 117 Let (X; �X) be a topological space. X is called Hausdro¤ if
for all x; y 2 X; there exists a neighbourhood U of x and a neighbourhood V of
y such that U \ V = ?.

De�nition 118 Let A be an indexing set. The set C = fU� : � 2 Ag of indexed
family of sets U� is a cover of X if X �

[
�2A

U�. A topological space is called

compact if every open cover can be reduced to a �nite subcover.

It follows that every �nite set is compact.

Proposition 119 Compact sets in Hausdro¤ Spaces are closed

Proof. This is easy to see in the �nite case. For the in�nite case, let C be
a compact subset of a Hausdro¤ Space X. Then, for every open cover, we
can have a �nite subcover of neighbourhoods U (xi) for 1 � i � n. X being
Hausdro¤ implies that V (xi) for n+1 � i � m is disjoint from U (xi) for each i.
Consider Va =

\
V (xi) for some a 2 X. Then, V (x) � X � C and, therefore,

X � C =
[
a2X

Va is open.

Not every compact set is closed. For instance, in the co�nite topology (a
topology in which every closed set is �nite) for Z, every subset of Z is compact,
some of which are closed (�nite) and some of which (in�nite ones) are open. To
see this, consider two cases of a subset A. If A is �nite, then it is compact. If it
isn�t, then one can always �nd a �nite subcover by simply taking union of two
open in�nite sets, which can always be found, given the de�nition of co�nite.
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Proposition 120 Every closed subset of a compact set is compact

Proof. Let (X; �X) be a compact topological space and let Ac 2 �X . Let C be
an open cover of Ac. Then, A [ C is also an open cover of A. Since (X; �X) is
compact, therefore C can be reduced to a �nite subcover C = fU1; U2; :::; Ukg.
SinceX �

[
C and A � X, therefore A �

[
C, which implies that A is compact

by de�nition.

Proposition 121 Countable product of Hausdro¤ spaces is Hausdro¤

Proof. Let f(X�; ��)g be a family of Hausdro¤ spaces for � 2 I. Consider
(X; �) =

Y
a2I
(X�; ��)

(a�), (b�) be two disjoint points of (X; �). Then, ai 6= bi for some i 2 I.
Since (Xi; � i) is Hausdro¤ so there exist two disjoint open sets Ui; Vi � Si such

that ai 2 Ui, bi 2 Vi. In this case,
i�1Y
a=1

(X�; ��) � Ui�
Y

a=i+1

(X�; ��) and

i�1Y
a=1

(X�; ��) � Vi�
Y

a=i+1

(X�; ��) are two open disjoint sets in the product

space (X; �) containing the original points.

Proposition 122 �1 � �2 are topologies on a set X, if �1 is a Hausdor¤
topology, and if �2 is compact, then �1 = �2

Proof. Let F c 2 �2 . That is, F is �2-closed. Since X is �2-compact, and F is a
closed subset, therefore F is �2-compact. From, �1 � �2 we have F c 2 �1: Also,
every opencover of �1 is also an open cover of �2. Therefore, F is �1-compact.
Since �1 is a Hausdor¤ topology, it follows from the previous proposition that
F is �1-closed. That is, F c 2 �1. Thus, �2 � �1
We know that a norm space gives rise to a metric space and hence a topolog-

ical space. We also know that equivalent norms on N de�ne the same topology
for N .
Proof sketch. Suppose that a norm k:k1 generates a topology �1 and k:k2
generates the topology �2. What this means is that open sets (balls) in either
topology will be formed from their respective norms. To prove that the topolo-
gies are equivalent, we need to prove that they are both subsets of each other.
This can be done by showing that every open set in one topology is contained in
another because of the radius of the ball is less than or equal to than a constant
times the radius of the other.
We may de�ne a possibly di¤erent (weaker) topology on N using the con-

tinuous dual space N�. Obviously for any f 2 N�, f is linear and bounded
and, therefore, continuous. By de�ning a new topology on N , we must ensure
that the continuity of functionals is not compromised. We, therefore, want a
topology on N which should be the coarsest topology with respect to N� such
that each element of N� remains continuous. Rigorously,
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De�nition 123 Given a Banach Algebra A over a topological �eld F, the weak
topology �w on A is the coarsest topology on A such that each f : (A; �w) �! F
is continuous.

By continuity, we must have open sets as the inverse images of open sets.
Thus, it makes sense to require that the initial topology be described as the
topology generated by sets of the form f�1(V ), where V is an open set in F.
This makes sure that open sets of A are formed in the smallest possible way with
respect to F. Now, since the arbitrary union and �nite intersection of open sets
of a topological space are open, we can use f�1i (V ) to generate for ourselves
a topology, which is the weak topology. It, therefore, makes sense to have a
subbasis. A subbasis for the weak topology is the collection of sets of the form
f�1(V ) where f 2 A� and V is an open subset of F.
It is easy to see that we can have

[
i

f�1 (Vi) = A for some i 2 I

In the topological setting, convergence is de�ned as follows: a sequence
xn �! x 2 X if 8V 2 � containing x, there exists a natural number N such
that xn 2 V for all n � N . Similarly, a sequence xn is Cauchy if 8U 2 �
containing 0, there exists a natural number N such that xn � xm 2 U for
all n;m � N . With this in mind, we assert that the consideration of a weak
topology coincides with the idea of weak convergence. Speci�cally, a sequence
(xn) in A converges in the weak topology � to the element x of A if and only if
f(xn) �! f(x) for all f 2 A�.
Proof. ( =) ) Since f 2 A� is continuous, this side is trivial.

((= )Let x 2 U 2 � . By de�nition, U is made by union of
n\
i=1

f�1(Vi) for

all f 2 A�. Thus, f (x) 2 Vi for all i. By hypothesis, f(xn) �! f(x). That is,
8Vi 2 � containing f (x), there exists a natural number Ni such that f (xn) 2 V
for all n � N . Letting N = maxNi completes the proof.
Let E be a bounded subset of a Banach Algebra A. The collection of sets

B = fU�;E : � > 0; E � Ag ; where U�;E = ff 2 A� : jf (x)j < �8x 2 Eg is a
neighbourhood of the zero functional, de�nes a basis for a topology. Notice
that 0̂ 2 A� and that for f = 0̂, jf (x)j < � for all x 2 E � A. Hence the
de�ned U�;E are non-empty and, therefore, any such two neighbourhoods have
a nonempty intersection. Note that for E = ?, U�;E = ?.
Now we show that such a collection forms a basis. That is, a) Every f 2 A�

is contained in some U�;E and b) If x 2 U; V 2 
, then 9W 2 
 such that
x 2W � U \ V
a)
For any x 2 A, de�ne E = fxg. Then, E is bounded. Thus, for any f 2 A�;

jf (x)j � kfk kxk < kfk kxk+ � = � for � > 0. Hence for any f 2 A� and x 2 A,
we can have U�;E containing f where E = fxg and � = kfk kxk+ �:
b)
Let x 2 U�1;E1 ; U�2;E2 . That is, there exists f1; f2 2 A� such that jf1 (x)j < �1

and jf2 (y)j < �2 for all x 2 E1 and y 2 E2. De�ne E := E1 \ E2 � Ei where
i = 1; 2 and E is bounded since Ei�s are bounded. There are two cases to
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consider. If A1 \A2 is empty, then (b) is vacuously true. If E1 \E2 6= ?, then
de�ne � = min f�1; �2g. Then, jf (x)j < �, 8x 2 E where f 2 U�1;E1 \ U�2;E2 :
This intersection is always non-empty. Hence we have shown that there exists
a set U�;E such that U�;E � U�1;E1 \ U�2;E2
Since such a collection forms a basis, it su¢ ces to say that the collection of

arbitrary unions of U�;E with varying �; E forms a topology. However, we prove
this directly.
Proof. U�;E is open. We show that U c�;E = ff 2 A� : jf (x)j � �8x 2 Eg is
closed. Let f be a limit point of U c�;E . Then, there exists a sequence fn in U

c
�;E

such that fn �! f . That is, jfn (x)j � � for all x 2 E. By continuity of j:j,
jf (x)j � �. We also show that f is linear. Since every �0 neighbourhood of
f intersects U�;E , we must have jf (x)� fn (x)j < �0=3, jf (y)� fn (y)j < �0=3
and jf (x+ y)� fn (x+ y)j < �0=3 for x; y 2 E. Note that fn (x+ y) = fn (x)+
fn (y) for all n hence jf (x+ y)� f (x)� f (y)j = jf (x+ y) + fn (x+ y)� fn (x)� fn (y)� f (x)� f (y)j
� jf (x)� fn (x)j+ jf (y)� fn (y)j+ jf (x+ y)� fn (x+ y)j < �0
Hence f (x+ y) = f (x) + f (y)
Next, let jfn (�x)� f (�x)j < �0=2 and jf (x)� fn (x)j < �0=2 j�j. Hence

jf (�x)� �f (x)j = jf (�x)� �f (x) + fn (�x)� �fn (x)j
� jf (�x)� fn (�x)j+ j�f (x)� �fn (x)j < �0. Thus, f (�x) = �f (x)
Thus, each U�;E is a member of the weak topology. By the same reason

and by the construction of a set U�;E such that U�;E � U�1;E1 \ U�2;E2 , the
intersection of two open sets is open.
Now, let U�i;Ei be elements of basis B for some indexing set I. For � =

max
i
f�ig and E =

[
i

Ei, we have U�;E =
[
i

U�i;Ei . To obtain ?, we take the

empty union. Thus, arbitrary union of open sets is open. It is easy to see that
we can generate the dual space itself since every functional has a non-emtpy
kernel.
Thus, the neighbourhoods of zero generate a topology for the dual space.
As a remark, we mention that every �nite set is bounded. Thus, B = fU�;E : � > 0; E � Ag �

A = fU�;E : � > 0; C � Ag where C is a �nite set, E is a bounded set. Thus,
�A � �B.
We now move on to consider a topology on the original Banach Space.

Consider C =
n
S (x0; �; C

�) : � > 0; C� � A0
o
where C� is a �nite set, and

S (x0; �; C
�) = fx 2 A : jf (x)� f (x0)j < �8f 2 C�g. We �rst prove that C is a

basis.
Proof. a) Since f is continuous, for every � > 0, we can �nd a � such that
jf (x)� f (x0)j < � whenever kx� x0k < �. That is, given any � > 0, we can
�nd x 2 A in a �-nbd of x0. Hence (a) holds. By the same reason, S (x0; �; C�)
is open.
b) Now, let C�1 = ff1; f2; :::; fng and let C�2 = fg1; g2; :::; gmg. Consider

S (x0; �1; C
�
1 ) and S (x0; �2; C

�
2 ). Again, x 2 C� := C�1 \ C�2 is either empty

or non-empty but �nite in both cases. In the former, there is nothing left
to prove. In the latter, let � = min f�1; �2g and C� = fh1; h2; :::hkg where
k � min fm;ng to prove (b). The existence of C� is, therefore, independent of
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the linear dependence of elements from C�1 and C
�
2 .

Thus, C generates a topology. If we want subbasis, we need to consider
�nite intersections of S (x0; �; C�). These open sets are some of the inverse
images spoken of in the de�nition of subbasis for the topology on A.

De�nition 124 The coarsest topology on A� with respect to which all function-
als Fx in A�� are continuous is called weak-� topology

We now consider the neighbourhood

Problem 125 Show that the collection of sets 
 = fS (f0; �; E) : � > 0; E � Ag
where A is a Banach Algebra, E is a bounded set and S (f0; �; E) = ff0 2 A� : jFx (f)� Fx (f0)j < �8x 2 Eg =
ff 2 A� : jf (x)� f0 (x)j < �8x 2 Eg de�nes a basis for a topology

Solution 126 a) Let f 2 A�. Since jFx (f)� Fx (f0)j = jf (x)� f0 (x)j �
kf � f0k kxk < � for all x 2 E, hence (a) holds
b) Consider S (f0; �1; E1) \ S (g0; �2; E2). Then, de�ne E := E1 \ E2 and

� = min f�1; �2g. If E is empty, then so is S (f0; �1; E1) \ S (g0; �2; E2). If not,
then clearly, S (h0; �; E) � S (f0; �1; E1) \ S (g0; �2; E2)

Now, if the collection of sets 
1 = fS (f0; �; E) : � > 0; E � Ag where E is a
�nite set de�nes a basis for a topology (which it does), then 
1 � 
 and hence
�
 � �
1 .
Note that the weak-� topology is generated by kfkx = jf (x)j and also that

for any Fx : A� �! C is continuous.

Theorem 127 The weak-� topology is Hausdro¤

Proof. Take two functions f and g. That is, we must have a vector x 2
A such that f (x) 6= g (x). We have to show that their neighbourhoods are
disjoint. Take � = jf(x)�g(x)j

3 > 0. If S (x; f; �) \ S (x; g; �) 6= ?, then let
h 2 S (x; f; �) \ S (x; g; �)
In this case, jh (x)� f (x)j < � and jh (x)� g (x)j < �. Now, for jf (x)� g (x)j �

jf (x)� h (x)j+ jh (x)� g (x)j < 2�
Hence jf (x)� g (x)j < 2: jf(x)�g(x)j3 which implies 3 < 2, a contradiction.

Hence S (x; f; �) \ S (x; g; �) = ?

Theorem 128 (Banach-Algalou Theorem) Unit ball is weak-� compact.

Proof. Take K = ff 2 A� : kfk � 1g. With each vector x 2 A, associate a
compact, Hausdro¤ space Cx where Cx is the closed ball fz : z � kxkg. By the
Tychono¤ theorem, the product C =

Y
Cx is also compact. Since each For each

x, the value of f (x) for all f 2 K lies in Cx since jf (x)j � kfk kxk � kxk so
we can consider K � C where f 2 K is associated with (f (x1) ; f (x2) ; :::) 2 C
for x1; x2; ::: 2 A. In fact, we have embedded K in C. Since the closed subset of
compact set is compact in the Hausdro¤ topology, to show that K is compact,
we show that K is closed. Let h 2 Kd. Then, there exist hn 2 K such that
hn �! h. hn 2 K implies khnk � 1. By continuity of norm, khk � 1. This h is
also linear.
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Theorem 129 The structure space of a commutative Banach Algebra A is
weak-� closed.

Proof. For any multiplicative linear functional f , kfk = 1, as proved. Hence
�(A) � K = ff 2 A� : kfk � 1g. Hence �(A).� K. Let Let h 2 �(A).
Then, h is linear. Therefore in order to show that h 2 �(A), all we have to
show is h (xy) = h (x)h (y) for all x; y 2 A
Consider the weak-� neighbourhoodW =W (X;h; �) of h forX = fx; y; x+ y; xyg.

Since f (xy) � f (x) � f (y) = 0 for f 2 W we have jh (xy)� h (x)h (y)j �
jh (xy)� f (xy)j+ jh (x)� f (x)j+ jf (y)� h (y)j �! 0.

Corollary 130 �(A) is weak-� compact.

Proof. This follows since K is compact and Hausdro¤ and �(A) is closed.

9.1 Gelfand Topology

The Gelfand topology of �(A) is the weak-� topology induced by (A�; �w).
That is,

�
�(A) ; ��(A)

�
= fY \X : X 2 �wg.

For each x 2 A, de�ne a mapping x̂ : � (A) �! C by x̂ (f) = f (x) for all
f 2 �(A). x̂ : � (A) �! C is continuous by de�nition of weak-� topology.
Consider the mapping ' : A �! Â where Â � A�� such that D (x̂) = � (A)

for all x 2 A where ' (x) = x̂. This is well-de�ned
Proof. x = y

=) f (x) = f (y)
=) x̂ (f) = ŷ (f) for all f 2 �(A)
=) x̂ = ŷ
=) ' (x) = ' (y)
' is called the Gelfand transform.

De�nition 131 Let A be a unital Banach Algebra and let M be the set of all
maximal ideals of A. The radical or Jacobson radical of A, denoted by radA,
is the intersection of all maximal ideasl of A.

That is, radA =
\

M2M
M .

We have seen before that there is a one-one correspondence between the
elements of �(A) and the setM of all maximal ideals of A, therefore radA =\
f2A�

ker f .

A is called semisimple if radA = f0g. Note that radA is a two-sided ideal of
A. We have seen that each maximal ideal is closed.

Example 132 Let A = Cn with coordinatewise algebraic operations. Maximal
ideals of Cn areMi = f(x1; x2; :::; xn) : xj 2 C; xi = 0, 1 � j � ng. radA = f0g
hence A is semisimple. Projection operations Pi are corresponding multiplicative
linear functions with kerPi =Mi
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Example 133 Let A = C (X). For each x 2 X, Mx = ff 2 C (X) : f (x) = 0g
are maximal ideals. Clearly, A is semisimple.

Theorem 134 �(A) is weak-� compact and Hausdro¤

Proof. �(A) is a weak-� closed subset of A� which is a compact, Haus-
dro¤ space. Hence �(A) is weak-� compact. �(A) is weak-� Hausdro¤ since
Hausdro¤ property is hereditary. We prove this directly.

�
�(A) ; ��(A)

�
=

fY \X : X 2 �wg where for any distinct x; y 2 A�, there exist disjoint neigh-
bourhoods U; V 2 �w such that x 2 U and y 2 V . For distinct f; g 2 �(A) =)
f; g 2 A� and, therefore, exist disjoint neighbourhoods U; V 2 �w such that
f 2 U and g 2 V . Thus, f 2 �(A) \ U and g 2 �(A) \ V such that
(� (A) \ U) \ (� (A) \ V )
= � (A) \ (U \ V ) = ?. By de�nition, �(A) \ V;�(A) \ U 2 ��(A)

Theorem 135 The Gelfand representation x 7�! x̂ is a homomorphism of A
onto Â whose kernel is the radical of A. Furthermore, the Gelfand representation
is an isomorphism i¤ A is semisimple

Proof. Note that Â � C (� (A)) is a subalgebra. The algebraic operations
on Â are de�ned pointwise. Let x̂; ŷ 2 Â and � 2 C. That is, (x̂+ ŷ) (f) =
x̂ (f) + ŷ (f), (�x̂) (f) = � (x̂ (f)) and (x̂ŷ) (f) = [x̂ (f)] [ŷ (f)]
We have to prove that
(i) ' (x+ y) = ' (x) + ' (y)
(ii) ' (�x) = �' (x)
(iii) ' (xy) = ' (x)' (y)
(i) ' (x+ y) = [x+ y = f (x+ y)
= f (x) + f (y) = x̂+ ŷ = ' (x) + ' (y)
Hence (i) holds.
(ii) c�x = f (�x) = �f (x) = �x̂
(iii) cxy = f (xy) = f (x) f (y) = x̂ŷ
Now, ker' = fx 2 A : ' (x) = 0g
= fx 2 A : x̂ = 0g
= fx 2 A : x̂ (f) = 08fg
=
\
f2A�

ker f =radA

' is an isomorphism
() ker' = f0g =radA
() A is semisimple

45


